
netconf
Roopa Prabhu, 9feb2016

 lwt, mpls, netlink api review

lwt

● Two kinds of users today:
○ using redirection without a tunnel netdevice (mpls, ila)
○ using dst_metadata and a single tunnel netdevice (flow

based tunnels: vxlan, geneve)

lwt redirection optimizations: too early, too late
● Two redirections available today (would more redirections be useful ?):

○ input redirection
○ output redirection

● Redirection too early:
■ In some cases, output redirection could wait for ip fragmentation to

finish before redirecting to tunnel output (eg., mpls)
● Redirection too late:

■ input redirection where it is today, hurts early demux (eg., ILA)

lwt redirection optimizations: too early, too late (Contd)

● Need for more strategically placed redirections/lwt-hooks in the future:
○ Example: an xmit redirect for mpls after ip fragmentation

■ Redirect in ip_finish_output2
■ https://github.com/CumulusNetworks/net-

next/commit/0cec8aa813af6904191c273ee07830875b3eb8d4

○ Possibly piggy back on netfilter hooks ?

https://github.com/CumulusNetworks/net-next/commit/0cec8aa813af6904191c273ee07830875b3eb8d4
https://github.com/CumulusNetworks/net-next/commit/0cec8aa813af6904191c273ee07830875b3eb8d4
https://github.com/CumulusNetworks/net-next/commit/0cec8aa813af6904191c273ee07830875b3eb8d4

lwt: mtu headroom in lwt_state (for mpls ip tunnels)
struct lwtunnel_state {

 __u16 type;

 __u16 flags;

 atomic_t refcnt;

 int (*orig_output)(struct net *net, struct sock *sk,

struct sk_buff *skb);

 int (*orig_input)(struct sk_buff *);

 int len;

 __u16 headroom;

 __u8 data[0];

};

struct lwtunnel_state -> headroom is initialized
by the light weight tunnel driver

ip_skb_dst_mtu {

 ….

mtu -= dst->lwtstate->headroom;

….

}

mpls

mpls futures

● stats (yes!, yet another stat for jamal :)
● mpls egress pop and lookup
● mpls VPN
● mpls ping and traceroute
● mpls hardware offload

Netlink API review

keeping netlink api extensible

● Encourage use of extensible nested attributes
● Most common errors today are due to copy pasting code from

other subsystems
● kernel does not return error on attributes it does not care (the

thing we discussed about yesterday!)
● Once you put iproute2 code out there, people use that as an

example. As long as kernel does not error out, and it works ..
the usage of the api lives ...until we need to extend it (next
slide)

Dump message header format inconsistent with
new/del:
RTM_NEWNEIGH - struct ndmsg

RTM_DELNEIGH - struct ndmsg

RTM_GETNEIGH - struct ifinfomsg

RTM_NEWMDB - struct br_port_msg

RTM_DELMDB - struct br_port_msg

RTM_GETMDB - struct ifinfomsg

The reason this happened over time is
because:

● libnetlink.c published an
rtnl_wilddump_request api which
implicitly sent ‘struct ifinfomsg’ for all
dumps whether the kernel supported
it or not

● And people started using the api
regardless of type of dump or type of
family (basically cut-copy-paste error)

iproute2: check attribute type before dereferencing

for (i = RTA_DATA(attr); RTA_OK(i, rem); i = RTA_NEXT(i, rem)) {

 e = RTA_DATA(i);

 print_mdb_entry(f, ifindex, e, n);

 }

}

ie ..don’t assume an attribute type

netlink api review

● Would having a netlink api guideline document help ?

Other misc areas

other misc areas (you will see patches soon..)

● bridge:
○ per vlan stats
○ igmp stats
○ more per vlan things

● iproute2: complete support for bridge and bond netlink attributes
● vxlan (changelink, react to netdev events..,)

Thank you!

