
Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

Linux Multiqueue Networking

David S. Miller

Red Hat Inc.

New York City, 2009



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

TRENDS

More CPUs, either less powerful (high arity) or same
(low arity) as existing CPUs
Flow counts increasing
Networking hardware adjusting to horizontal scaling
Single queue model no longer works
Routers and firewalls have different needs than servers



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

CPU DESIGN

Traditionally single CPUs or very low count SMP
The move to high-arity CPU counts
One model: Sun’s Niagara
Lower powered CPUs, but many of them
Other model: x86 based systems
High powered CPUs, but not as high increase in arity
as Niagara approach, starting with hyperthreading
Future: Best of both worlds, high arity and power



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

END NODES VS. INTERMEDIATE NODES

End Nodes: Servers
Intermediate Nodes: Routers and Firewalls
Intermediate nodes have good flow distribution implicit
in their traffic
Also, processing a packet occurs purely within the
networking stack itself, no application level work
End nodes also usually have good flow distribution
However, there is the added aspect of application cpu
usage
Completely stateless flow steering
Or, application oriented flow steering



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

NETWORKING HARDWARE DESIGN

Traditionally a single-queue model
Limitations of bus technology, f.e. PCI
Advent of MSI and MSI-X interrupts
RSS based flow hashing
Multiple TX and RX queues
Stateless flow distribution
Extra sophistication: Sun’s Neptune 10G Ethernet
TCAMs and more fine-grained flow steering
Intel’s IXGBE “Flow Director”



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

NAPI: “NEW API”

Interrupt mitigation scheme designed by Jamal Hadi
Salim and Robert Olsson
On interrupt, further interrupts are disabled and
software interrupt is scheduled
Software interrupt “polls” the driver, which processes
RX packets until no more pending packets or quota is
hit
Quota provides DRR (Distributed Round Robin) sharing
between links
When polling is complete, chip interrupts are re-enabled



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

LIMITATIONS OF NAPI

All state embedded literally inside of “struct netdevice”
Ideally we want some kind of “NAPI instance” for each
chip interrupt source
But we had no direct way to instantiate such instances
structurally
Fixes were in order



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

STEPHEN HEMMINGER TO THE RESCUE

Extracted NAPI state into seperate structure
Device driver could create as many instances as
necessary
Multiple RX queues could be represented using
multiple NAPI instances
And this is exactly what multiqueue drivers do
Oh BTW: Nasty hacks...



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

PACKET SCHEDULER

Sits between network stack and device transmit method
Supports arbitrary packet classification and an
assortment of queueing disciplines
Has to lock QDISC and then device TX queue to get a
packet to the device
SMP unfriendly, and just like NAPI had state embedded
in netdevice struct
Root qdiscs cannot be shared
Complicated qdisc and classifier state has “device
scope”
Luckily the default configuration is a stateless and
simple qdisc



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

DRIVER TX METHOD

Manages TX queue flow control assuming one queue
Need to add queue specifier to flow control APIs
But do so without breaking multiqueue-unaware drivers
With NAPI we could totally break the API and just fix all
the drivers at once
Only a relative handful of drivers use NAPI
Breaking the flow control API would require changes to
roughly 450 drivers
So, backward compatible solutions only.



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

TX QUEUE SELECTION

Selected queue stored in SKB
Queue selection function is different depending upon
packet origin
Forwarded packet: Function of RX queue selected by
input device
Locally generated packet: Use hash value of attached
socket
Thorny cases: Devices with unequal RX and TX
queues



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

PICTURE OF TX ENGINE

QDISCdev_queue_xmit() ->

dev->queue_lock

hard_start_xmit

TX lock

set SKB queue mapping

DRIVER

TXQ TXQ TXQ



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

PICTURE OF DEFAULT CONFIGURATION

dev_queue_xmit

TXQ

TXQ

TXQ

qdisc
->q.lock

qdisc
->q.lock

qdisc
->q.lock

TX lock

TX lock

TX lock

driver



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

PICTURE WITH NON-TRIVIAL QDISC

TXQ

TXQ

TXQ

qdisc
->q.lock

TX lock

TX lock

TX lock

SKB

skb

driverSKB



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

MOTIVATION

Performance, duh...
Many networking devices out there are not multiqueue
capable
Whilst stateless RX queue hashing is great for
forwarding applications...
It is decidedly suboptimal for end-nodes.
Problem: Figuring out the packet’s “destination” before
it’s “too late”



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

EXAMPLE SCENERIO



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

EARLY EFFORTS

Influenced by Jens Axboe’s remote block I/O
completion experiments
Up to 10 percent improvement in benchmarks where
usually a 3 percent improvement is something to brag
heavily about
Generalization of remote software interrupt invocation
Counterpart usage implemented for networking
Basically SW multiqueue on receive
Detrimental for loopback traffic



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

MORE RECENT WORK

Patch posted by Tom Herbert at Google
Per-device “packet steering” table, set via sysctl by user
When packet steering is enabled, receive packets are
hashed and this indexes into the table
Entry found in table is cpu to steer packets to
Packet steered to foreign cpus using remote SMP calls
and special software interrupt
Whole mechanism is enabled also via sysctrl
If disabled or no valid entry found in the table, behavior
is existing behavior



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

ANOTHER IDEA: SW “FLOW DIRECTOR”

CPU on which transmits for a flow occur is
“remembered”
On receive for that flow, remembered cpu is looked up
and packet steered to that CPU
Problems of space
Problems of time
Problems of locality



Linux
Multiqueue
Networking

David
S. Miller

Background

RX
Multiqueue

TX
Multiqueue

Application-
based and
SW Steering

The End

CREDITS

Linus Torvalds, for sharing his kernel instead of keeping
it to himself
Ron Guerin and the rest of the NYLUG folks for letting
me present today
Stephen Hemminger and Rusty Russell for early RX
multiqueue work
Jarek Poplawski, Patrick McHardy, Jamal Hadi Salim,
and Eric Dumazet for help with TX multiqueue
implementation
Robert Olsson and Herbert Xu for continuing help
throughout all of this
Tom Herbert and others at Google for ongoing efforts


	Background
	RX Multiqueue
	TX Multiqueue
	Application-based and SW Steering
	The End

