
netconf: BPF, Cilium, bpfilter items.

Daniel Borkmann
<daniel@covalent.io>

Covalent IO

netconf, May 31, 2018

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 1 / 18



Part 1: BPF Maintenance.

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 2 / 18



BPF Maintenance: Updated stats

 0

 50

 100

 150

 200

 250

 300

0
6

/2
0

1
5

, 
v
4

.1

v
4

.2

v
4

.3

0
1

/2
0

1
6

, 
v
4

.4

v
4

.5

v
4

.6

v
4

.7

v
4

.8

v
4

.9

0
2

/2
0

1
7

,v
4

.1
0

v
4

.1
1

v
4

.1
2

v
4

.1
3

v
4

.1
4

0
1

/2
0

1
8

,v
4

.1
5

v
4

.1
6

*v
4

.1
7

*v
4

.1
8

Core BPF contributions to the Linux kernel

non-merge commits
individual contributors

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 3 / 18



BPF Maintenance: Current state

4.18 kernel stats will be a new record for BPF
248 patches (excluding XDP driver changes)
35 different contributors

Since approx last netconf, end of Nov 2017:
2,065 patches in patchwork’s bpf delegate

avg. 17 patches per work day

794 ended up in state ’accepted’
avg. 7 patches per work day

18 pull-requests for bpf-next
26 pull-requests for bpf

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 4 / 18



BPF Maintenance: Scalability
Bottleneck: reviews of incoming patches

Current solution: two stage review process
Weekly review oncall rotation for spreading load:

Yonghong, Martin, Song, Alexei, Daniel

Goal: promtly review of all BPF related patches coming to netdev
Basic rules of thumb:

Started review also includes subsequent patches, even beyond rotation
Changes requested from reviewer → purged from patchwork queue
Okay to make mistakes in reviews, okay to ask questions of course
Once series is acked by reviewer → second, final stage

Final vetting: Alexei, Daniel
Benefit of this model:

Avoidance of us being bottleneck → better scalability
Reviewers gain more insights into various BPF parts
Improved quality of reviews and submitted code

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 5 / 18



BPF Maintenance: Scalability
stable kernel backports

Regularly batched depending on load
Whenever conflict free and tests okay → punting cherry-pick to Greg
Otherwise manual timely backport and testing

Includes Cilium test suite and BPF selftests
Extensive BPF kernel selftests crucial (!)

Supported (current) stable branches: 4.9, 4.14, 4.16
No / little handling of 4.4 due to lack of test hardware

bpf / bpf-next interdependencies dependencies
1-3 days worst case stalls on dependency chains like
bpf → net → net-next → bpf-next to get bpf into bpf-next
Trying to keep this to a minimum iff possible
But upon request we’ll flush either tree out immediately to avoid
annoying waiting time for regular syncs

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 6 / 18



BPF Maintenance: Testing, debugging, documentation
BPF kernel selftests

test verifier + test kmod.sh alone run 2,018 test progs
Biggest subsystem under kselftests along with RCU-torture
Often mandatory and developed in sync with features or fixes
Very happy with state of syzkaller as well (!)

Debugging, introspection: bpftool
Goal: bpftool ≡ the go-to tool around all things (e)BPF
Similar co-development model for new features as with selftests
Still lacking behind (also libbpf): general availability as distro packages

Documentation for lowering entrance barrier
Proper BPF (uapi) helper documentation made mandatory as part of
bpf.h, integration into man-pages project ongoing. Alternative: bpftool
BPF/XDP refguide currently in Cilium (http://docs.cilium.io)
Design and devel FAQ added. Feature matrix for JITs / XDP drivers?

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 7 / 18

http://docs.cilium.io


BPF Maintenance: Misc random items

BPF tooling include infrastructure - better options?

BPF boot options vs sysctl discussion

Removal of attr->kern version from kprobes side

AF XDP temporary UAPI removal till full zero-copy lands
Widespread JIT changes and testing challenging

Good test coverage: x86 64, arm64, s390x, nfp, ppc64*, sparc64*
State unclear: mips64, arm32, x86 32

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 8 / 18



Part 2: Cilium and BPF.

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 9 / 18



Cilium + BPF: Today from kernel PoV
Orchestration layer pluggable (e.g.) into Kubernetes for providing
security and connectivity for microservices at L3/L4 and L7
Fully distributed, service mesh data path with BPF
Uses three flavors of BPF programs: XDP, cls bpf, sk progs*

XDP use case mainly for early drop DDoS mitigation today (CIDR +
Cilium endpoints), potentially DSR LB in future
cls bpf in direct-action mode for all heavy duty data path work in BPF
(ingress + egress policy enforcement (label-, CIDR-based on L3, L4,
redirect to L7 proxy; individual + combined policies), DSR LB,
connection tracking, NAT, NAT64, vxlan / geneve-based collect-meta
encap / decap, routing / forwarding, host delivery, metrics collection,
perf RB events (debugging, pkt tracing), arp handling, ...)

Progs attached on phys device, overlays, veths (enforcement on
host-facing veth side, ingress)

sk progs for L7 in-kernel policy enforcement and redirect to accelerate
L7 proxies like Envoy* (e.g. HTTP, gRPC, Kafka, others)

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 10 / 18



Cilium + BPF: sockmap programs, ULP
Microservices and shift to ’API economy’
Typical k8s deployment: Istio service mesh with Envoy side-car proxy
Control plane API → Pilot (deploys configs to Envoy), Mixer (policy,
routing, telemetry, quota), Auth (TLS certs for Envoy)
Data plane: Envoy L7 proxy with protos like HTTP, gRPC, Kafka,
with or without TLS

Deployed in front of every service across fleet, talk only via proxy
Combinable with other services e.g. Prometheus, Zipkin for monitoring

E.g. allows for rolling updates of services via Mixer routing
All transparent to app developer, no extra code for functionality
Today: Cilium deployed along with Istio to provide L3 - L7 policy

BPF data path handles all forwarding logic to / from Envoy
Envoy has BPF specific extensions to exchange information with
Cilium’s BPF data path

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 11 / 18



Cilium + BPF: sockmap programs, ULP
Issue with side-cars: from serivce to service min 6 stack traversals
Cilium’s BPF sockmap transparently accelerate proxies like Envoy

Think of sockmap progs like cls bpf for socket layer
Parser/verdict BPF program pair for sk msg / sk skb
msg apply cork(), msg apply bytes(), msg pull data()
Managed from Cilium side via cgroups v2
Next up: native loops and kTLS integration
Complex protos via slow-path ’umh module’ or AF XDP?

ULP interplay with sockmap and kTLS tricky, today: pick one
Potential options

Stacked ULP (egress: sockmap → kTLS, ingress: kTLS → sockmap)
Fixed order so BPF can run on unencrypted data

Single ULP only but with optional sockmap / kTLS extension

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 12 / 18



Cilium + BPF: BPF related observations from deployments

Minimal kernel of 4.9.17+ required, 4.9 seems reasonable base

Various verifier proglets to test feature availability, works okay
Main headache on verifier complexity side, but with code workarounds
(e.g. avoidance of dynamic map access) under control

Causes for complexity increase often like finding needle in haystack
Iff we keep complexity limit in future → bpftool for debugging

From time to time other LLVM / verifier quirks but largely decreased
BPF side stable in general, user reported issues mainly higher in stack

Test matrix of supported ’kernel x LLVM’ versions rather big

Cilium has heavy use of tail call tricks → more retpoline cases

Distro support with recent kernels and BPF enabled mostly okay

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 13 / 18



Cilium + BPF: Misc random items

ipvlan + BPF integration bit of a hack compared to veths
Policy enforcement on host facing side only via VEPA mode
Enforces all traffic back to host side, BPF on tc egress on phys device
Redirects skb back to ingress side of phys dev to push to another netns
One resched point less than with veths though

Upgrade / downgrade of BPF maps without full data loss iff possible
(analysis via BTF)

Current loader detects map property changes and creates new map

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 14 / 18



Part 3: bpfilter.

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 15 / 18



bpfilter: Rationale and long term plan
Transparently convert iptables / nftables requests into eBPF bytecode

Keeping existing UAPI working as is
Full reuse of efficient BPF infrastructure in data path
For example, JITs, XDP, even offloads for SmartNICs

XDP hints for !SmartNICs also beneficial for transparent reuse
Possibility to reduce kernel attack surface through BPF

BPF insns pushed through verifier from special ’umh module’
Code generated out of user space behind syscall boundary
Hooks would eventually become call to BPF PROG RUN() only
Enables removal of old xtables kernel code, etc

Advantages of ’umh module’ concept
Delegate potentially complex transformation in user space
Crash of bpfilter ’umh’ module doesn’t take down kernel
Built and shipped as part of kernel, no difference to kernel modules
Debugging, test suite, sanitizers, fuzzers, etc out of user space

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 16 / 18



bpfilter: Current state
’umh’ module code and basic bpfilter skeleton merged

New fork usermode blob() helper
Kernel allocates unique file in tmpfs, populates it with data blob
UMH helper will exec that file, kernel creates 2 pipes on start (pipe to
UMH, pipe from UMH)
Allows for bidirectional communication between kernel, UMH module
bpfilter.ko → Contains two pieces

bpfilter kernel module code for UMH setup / teardown
mbox proto for hooking UMH to bpfilter sockopt handling
rmmod of bpfilter kernel mod will remove UMH as well

bpfilter user space bit has main mbox handling loop
Currently just dummy, bailing out with error

RFC dissected iptables request blob, assembled generated BPF insns,
and called into bpf(2) from there

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 17 / 18



bpfilter: Next steps
Discussion on ’make BPFILTER UMH depend on X86’

bpfilter umh build issues due to hostprogs getting built with ’gcc’
rather than ’$(CROSS COMPILE)gcc’
Test on HOSTCC’s arch == kernel arch

Remainder of bpfilter RFC cleaned up and matches further extended
Initial setting via XDP hook so far
Planned for next net-next cycle to push out
Basic L3, L4 and CIDRs, non-linear codegen optimizations via maps

Initial framework for bpfilter selftest suite, potentially for kselftests

Missing helpers designed also for potential reuse

Up next: connection tracker, NAT engine, tproxy, ...

Discussion via Alexei later: removing glibc dependency

Daniel Borkmann, Covalent IO BPF/Cilium/bpfilter May 31, 2018 18 / 18


