Scaling bridge forwarding database

Roopa Prabhu, Nikolay Aleksandrov
Agenda

- Linux bridge forwarding database (FDB): quick overview
- Linux bridge deployments at scale: focus on multihoming
- Scaling bridge database: challenges and solutions
Bridge FDB entries

- Flood and learn (most basic case)
- End point
 Orchestrator/provisioning controller based FDB programming
- Control plane learning:
 • Local or distributed
- [\langle\text{Mac}\rangle \ \langle\text{vlan}\rangle \ \langle\text{dst_port}\rangle]
Bridge FDB entries: network virtualization (overlay: eg vxlan)

- Overlay macs point to overlay termination end-points
- Eg Vxlan tunnel termination endpoints (VTEPS)
 - Vxlan FDB extends bridge FDB
 - Vxlan FDB carries remote dst info
 - \[<\text{mac}> <\text{vni}> <\text{remote_dst list}> \]
 - Where remote_dst_list = remote overlay endpoint ip’s
 - Pkt is replicated to list of remote_dsts
Bridge FDB entries: overlay example

- switch1: M1 and M2 are local macs. M3 and M4 are remote macs
Bridge FDB database scale
Bridging scale on a data center switch

- layer-2 gateway
- Bridging accelerated by hardware
 - HW support for more than 100k entries
 - Learning in hardware at line rate
 - Flooding in hardware and software
- IGMP snooping + optimized multicast forwarding
- Bridging larger L2 domains with overlays (e.g., vxlan)
- Multihoming: Bridging with distributed state
Layer-2 gateway in a datacenter architecture
Bridge FDB performance parameters at scale

- Learning
- Adding, deleting and updating FDB entries
- Reduce flooding
- Optimized Broadcast-Multicast-Unknown unicast handling
- Network convergence on link failure events
- Mac moves
Multihoming
Multihoming

- Multihoming is the practice of connecting host or a network to more than one network (device)
 - To increase reliability and performance
- For the purpose of this discussion, let’s just say it’s a “Cluster of switches running Linux” providing redundancy to hosts
Common functions of a multihoming solution

• Provide redundant paths to multihomed end-points
• Faster network convergence in event of failures:
 ▪ Establish alternate redundant paths and move to them faster
• Distributed state:
 ▪ Reduce flooding of unknown unicast, broadcast and multicast traffic regardless of which switch is active:
 • By keeping forwarding database in sync between peers
 • By Keeping multicast forwarding database in sync between peers
Multihoming: dedicated link

- Dedicated physical link (peerlink) between switches to sync multihoming state
- Hosts are connected to both switches
- Non-standard multihoming control plane
Multihoming: bridge: dedicated link

- Peerlink is a bridge port
- FDB entries to host point to host port `<M1> dev swp1`
- FDB entry on swp1 failure, moved to peerlink: `<M1> dev peerlink`
Network convergence during failures

- Multihoming Control plane reprogrammes the FDB database:
 - Update FDB entries to point to peer switch link
 - Uses bridge FDB replace
 - Restore when network failure is fixed
- Problems:
 - Too many FDB updates and netlink notifications
 - Affects convergence
Bridge port backup port

• For Faster network convergence:
 ▪ peer link is the static backup port for all host bridge ports
 ▪ Make peer link the backup port at config time:
 • bridge seamlessly redirects traffic to backup port
 ▪ Patch [1] does just that
Per Bridge backup port [1]

Before:

```bash
$ bridge fdb show
mac1 dev swp1
/* On swp1 link failure event, control plane updates each fdb entry to point to peerlink */
$ bridge fdb show
mac1 dev peerlink
```

After:

Bridge port swp1 has peerlink as backup port:

```bash
$ ip link set dev swp1 type bridge_slave backup_port peerlink
$ bridge fdb show
mac1 dev swp1
/* On swp1 link failure event, kernel implicitly forwards traffic to backup port peerlink. No change to fdb entry */
$ bridge fdb show
mac1 dev swp1
```
Future enhancements

Debuggability:

- FDB dumps to carry indication that backup port is active
Multihoming: network overlay
Multihoming with network virtualization

- E-VPN RFC [2]: BGP based multihoming control plane
- No dedicated link between the clustered switches in a multihomed environment
- Dedicated switch peer-link is now replaced by the overlay
 - Eg a vxlan tunnel port in a vxlan environment
- More than 2 switches in a cluster
- In the active-active case, more than one remote dst in the underlay:
 - `mac <remote-end-point-underlay-ip-list>`
 - Requires mac ECMP (FDB entry mac pointing to ecmp group containing remote dsts)
Multihoming: network overlay
Control plane strategies for faster convergence

- Designated forwarder: avoid duplicating pkts [2,3]
- Split horizon checks [4]
- Aliasing: Instead of distributing all macs and withdrawing during failures infer from membership advertisements [5]
Forwarding database changes for faster convergence

- Backup port: to redirect traffic to network overlay on failure [1]
- Mac dst groups (for faster updates to FDB entries):
 - FDB entry points to dst group (dst is an overlay end-point)
 - Dst group is a list of vtep with paths to the MAC
 - Think FDB entries as routes:
 - Ability to update dst groups separately is a huge win
 - Similar to recent updates to the routing API [6]
New way to look at overlay FDB entry: dst groups

Current vxlan forwarding database

Eg: Vxlan fdb entry:

New proposed vxlan forwarding database

Eg: Vxlan fdb entry:

Dst group db:
Fdb database API update

New fdb netlink attribute to link an fdb entry to a dst group:

- NDA_DST_GRP
New dst group API

To create/delete/update a dst group:
RTM_NEW_DSTGRP/RTM_DEL_DSTGRP
/RTM_GET_DSTGRP

enum {
 NDA_DST_UNSPEC,
 NDA_DST_IP,
 NDA_DST_IFINDEX,
 NDA_DST_VNI,
 NDA_DST_PORT,
 __NDA_DST_MAX,
}

#define NDA_DST_MAX (__NDA_DST_MAX - 1)

#define NTF_DST_GROUP_REPLICATION 0x01
#define NTF_DST_GROUP_ECMP 0x02
Other considerations for the dst group api

- Investigating possible re-use of route nexthop API [6]
Acknowledgements

We would like to thank Wilson Kok, Anuradha Karuppiah, Vivek Venkataraman and Balki Ramakrishnan for discussion, knowledge and requirements for building better Multihoming solutions on Linux.
References

[6] Nexthop groups: https://lwn.net/Articles/763950/
Thank you