

XDP: 1.5 years in production.
Evolution and lessons learned.

Nikita V. Shirokov
Facebook Traffic team

Goals of this talk:

Show how bpf infrastructure (maps/helpers) could be used
for building networking application and what benefits/
gotchas exist.
Share operational experience of running XDP on large scale

Operational Experience

Every packet toward facebook.com has been
processed by XDP enabled application since

May, 2017

http://facebook.com

XDP enabled application

L4 load balancer:
https://github.com/facebookincubator/katran

Reason for L4 load balancing:
https://atscaleconference.com/videos/networking-
scale-2018-layer-4-load-balancing-at-facebook/

https://github.com/facebookincubator/katran
https://atscaleconference.com/videos/networking-scale-2018-layer-4-load-balancing-at-facebook/
https://atscaleconference.com/videos/networking-scale-2018-layer-4-load-balancing-at-facebook/

L4 load balancer at glance

IP packet from user

5 tuple destination
5 tuple destination

5 tuple destination
...

encap

Why?

Deployment timeline

Oct, 2016

IPVS under flood

IPVS under flood

road to XDP LB

• Not everyone could have BPF maintainer in their company
• Lucky enough today we have: https://cilium.readthedocs.io/

en/v1.2/bpf/

Documentation matters

Encapsulation

IP packet from userencap

what we want:

what we had:

page

Encapsulation

IP packet from userencap

what we want:

what we had:

page
XDP_PACKET_HEADROOM

Encapsulation: example

Connection table

LRU types
BPF_MAP_TYPE_LRU_HASH

BPF_MAP_TYPE_LRU_PERCPU_HASH
TYPE + BPF_F_NO_COMMON_LRU

cpu 0 LRU list cpu 1 LRU list cpu 2 LRU list cpu 3 LRU list

Lesson/Tip: know your environment

server

initial deployment + evaluation

Deployment timeline

Oct, 2016 Jan, 2017

XDP under flood

Lesson: profile/measure everything
that moves.

e.g. NIC's bps perf != NIC's pps perf (64 bytes)
or

v6 vs v4
or

TCP vs UDP

XDP under flood

Our server's "topology"

RSS: Receive Side Scaling

RSS
Engine

rx queue 0

rx queue 1

rx queue n

cpu 0

cpu 1

cpu n

bpf maps

numa 1
numa 0

NUMA memory allocation

XDP under flood

output from cpu on the same NUMA node as bpf's map

For fun: LRU w/o BPF_F_NO_COMMON_LRU

XDP under flood

output from cpu on the same NUMA node as bpf's map

XDP under flood (stateless)

XDP under flood (stateless)

output from cpu on the same NUMA node as bpf's map

Single core performance
pps per single core. pktgen w/ TCP flood

w/ LRU

JIT is your friend

net.core.bpf_jit_enable = 1

kernel's interface counters
wont show the whole picture

your application must count bytes
and packets as well

XDP programs chaining

BPF_MAP_TYPE_PROG_ARRAY

bpf_tail_call

... bpf_tail_call

BPF_MAP_TYPE_PROG_ARRAY

tcpdump will stop to work

"xdpdump" for the rescue

"light" version available in katran's github repo.

Deployment timeline

Oct, 2016 Jan, 2017 May, 2017 Now

Evolution and operational experience

Evolution

Maps lookup
our code: ~6 arrays lookup ~3 hash lookups

Single core performance
pps per single core. pktgen w/ TCP flood

w/ LRU

+3% perf

RSS: Receive Side Scaling

RSS
Engine

rx queue 0

rx queue 1

rx queue n

cpu 0

cpu 1

cpu n

RSS and multiple CPUs

num queues < num cores

used

allocated

for us only ~30% of memory was used

what if we could allocate maps only for
"forwarding" cores

Map-in-Map support

Map-in-Map in action

Before Map-in-Map

After Map-in-Map

~3G

XDP under flood

XDP under flood (local NUMA)

XDP under flood (remote NUMA)

Single core performance
pps per single core. pktgen w/ TCP flood

w/ LRU

+14% (+10%) perf

I wish i could unit test XDP program

BPF_PROG_TEST_RUN

BPF_PROG_TEST_RUN

expected value

==

BPF_PROG_TEST_RUN

BPF_PROG_TEST_RUN

RSS: Receive Side Scaling

RSS
Engine

rx queue 0

rx queue 1

rx queue n

cpu 0

cpu 1

cpu n

bpf maps

numa 1
numa 0

bpf maps

bpf map's NUMA hint

w/o bpf map's NUMA hint

w/ bpf map's NUMA hint

XDP under flood

Single core performance
pps per single core. pktgen w/ TCP flood

w/ LRU

+19% (+4%) perf

XDP + fragmentation

XDP can not fragment packets
IP packet from userencap

XDP adjust tail

page

XDP adjust tail

page

XDP adjust tail

page

XDP adjust tail

XDP adjust tail

Spectre v2

Single core performance
pps per single core. pktgen w/ TCP flood

w/ LRU

-12% perf

inline update

Single core performance
pps per single core. pktgen w/ TCP flood

w/ LRU

+2% perf

nice to have features

• RX/TX checksum offloading
• Crypto helpers
• loops (bounded)

i wish i had more time...

• bpf function calls
• bpf_prog_test_run for microbenchmarking
• verifier/clang improvements (-g + llvm-objdump -source is

your friend!)
• XDP for syncookie generation

Questions?

