

Motivation

● Examples Bounded Loops
for (i = 0; i < max; i++) { do work }
while (i > blah) { … };
do { work } while {i}

● Guidelines:
– Lots of academic work on complex loops

● polynomial invariants, Grobner basis and more← fun but lets stick to basic ax+c for now.

● Agenda:
Review terms, goals, etc.
Approach #1 (by the books)
Approach #2 (compiler aided)
Approach #3 (instruction based)
Discuss

int array[10] = init
int max = 10, foo = blah, bar = blah;

for (i = 0; i < max; i++) {
int j = i * foo + bar;

value = bpf_map_lookup_elem(&map,
&key);

if (value > 0)
 sum += array[j]
else
 sum -= array[j]

}

h

x y

n

i and j are Induction variables
h is a header node
e

back
 backedge n->h

h

x y n

DOM Tree

CFG
nat loop

h dominates n, x, y
Natural loop: the set of nodes x, where h dom
x with a path from x to n _not_ containing h.
 intuition: Does not have multiple goto's into loop.

Find Natural Loop Algorithm:
1. Compute CFG and Dominator Tree
2. Find back edges
3. Find the natural loop using DOM Tree

e
1

e
2

e
3

e
4

e
5

e
back

h

x y

n

CFG
!nat loop

e
1

e
2

e
3

e
4

e
5

Approach #1: by the book
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/ wip/bpf-loop-detection

● Build CFG

● Build DOM Tree

● Detect and abort on irreducible loops

● Find loops (back edges)

● For Each Loop

– Find induction variables (pattern matching)

– Verify bounds on loop induction variable terminate

– “run” loop with worst case bounds, pruning works, array index worst case.

 hdr:
 <do stuff>
 if (i != x) goto hdr

hdr:

 <do stuff>
 if (i != x) goto out
 <do more stuff>
 goto hdr out:
 <outside loop>

Challenge: Many LLVM loop
patterns. At the moment we
do pattern matching and can
extend these but fragile.

PROP1: General forest of
Induction variables or SCEV
needed.

Approach #2: Compiler Aided
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/ wip/bpf-loop-detection

● Limit types of loops constructed by LLVM

● Easy to pattern match if LLVM plays along

● Still need to do full verification of natural loops (build DOM tree, etc.) and
find induction variables. But somewhat easier because of friendly LLVM.

-

 hdr:
 <do stuff>
 if (i != x) goto hdr

Approach #3: New instructions

● Loop specific instructions
– Denote loop blocks with instructions loop/end

– Requires LLVM backend to convert unstructured gotos into structured
loops. DOM tree no longer required replaced with strict hierarchy of
blocks.

– Ensure goto’s into loop blocks fail, overlapping blocks not allowed,
induction variable tracking still required.

BPF_JMP_LOOP(BPF_JLOOP_LABEL)

[…] ← (jumps into block not allowed)

BPF_JMP_LOOP(BPF_JLPEQ, BPF_REG_0, 0)

BPF instruction label, NOP in JIT

BPF *JLP* instructions,
jumps to scoped paired
BPF_JLOOP_LABEL. Verifier
will need to track pairs and replace
with proper jumps after verification.

Discuss

Decide how to proceed and get loop support.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

