
DPI in the kernel with BPF

Peter Parkanyi
peter@redsift.io



DPI IN BPF 
Motivation

https://github.com/redsift/ingrain
d

rsdy LPC 2018

➤ Server/desktop monitoring using the same software

➤ Easy deployment using a single static binary, no modules

➤ Detect DNS/TLS traffic on any port. (DNS packeting vs. nslookup)

➤ Containers

➤ Kubernetes

➤ No middleboxes in the cloud

➤ Multiple backends, including our own



DPI IN BPF 
Solution

https://github.com/ingraindrsdy LPC 2018

➤ Userspace agent in Rust

➤ Socket filters for TLS

➤ XDP for DNS

➤ Other BPF probes to monitor file access, generic traffic volumes

➤ Heavy use of perf events + epoll

➤ We can see which processes access which files, how much they read/write, and 

where they send how much data



DPI IN BPF 
What we learned

https://github.com/ingraindrsdy LPC 2018

➤ XDP only sees incoming traffic. In hindsight, this makes sense.

➤ Raw sockets impact performance

➤ Can’t iterate maps means only detection, no active components

➤ linux/tools/bpf is not extremely helpful during development

➤ The fact that it compiles doesn’t mean it will load (see above)

➤ Profiling probes is challenging

➤ 4096 insns & unrolled loops is a fun headspace

➤ Probes inserted in containers are wonky


