
© 2018 NETRONOME

Jiong Wang

Linux Plumbers Conference

Vancouver, Nov, 2018

Efficient JIT to 32-bit Arches

1

© 2018 NETRONOME

Background

 ISA specification and impact on JIT compiler

 Default code-gen use 64-bit register, ALU64, JMP64

 No big impact on 64-bit backends (REX header for x86-64)

 Requires extra regs and insns on 32-bit arches.

 Programs in real world are 32-bit friendly

 Nearly all non-pointer arithmetic are 32-bit and all will be if pointer is 32-bit

2

38%

62%

test_l4lb_noinline.c

32-bit ALU 64-bit ALU + JMP

31%

69%

test_xdp_noinline.c

32-bit ALU 64-bit ALU + JMP

Arch BPF_ALU/BPF_JMP

arm emit_alu_r(rd[1], rs[1], true, false, op, ctx);
emit_alu_r(rd[0], rs[0], true, true, op, ctx)

emit(ARM_CMP_R(rd, rm), ctx);
emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);

nfp emit_alu(…reg_both(dst), reg_a(dst), alu_op, reg_b(src));
emit_alu(…reg_both(dst + 1), reg_a(dst + 1), alu_op, reg_b(src +
1));
…

© 2018 NETRONOME

Solution A - 32-bit subreg ISA

 eBPF ISA already defined 32-bit subreg and ALU32 insns, could pass 32-bit semantics from c types down to assembly

 A subreg read is always 32-bit read, but write implicitly zeros high 32-bit. Compilers or hand written assembly could be
using this

 32-bit arches must model implicitly zero extension using extra insns to guarantee correctness. This applies to all ALU32
insn. How could we avoid these extra code-gen?

3

void cal(u32 *a, u32 *b, u64 *c) {
u32 sum = *a + *b;
*c = sum;

}

-mattr=+alu32

cal:
w1 = *(u32 *)(r1 + 0)
w2 = *(u32 *)(r2 + 0)
w2 += w1
*(u64 *)(r3 + 0) = r2
exit

ALU32 insn but there is exploit of implicit zero
extension on w2 by the following store

Reference a 32-bit subreg as a 64-bit definition

-mattr=+alu32 (since LLVM 7.0)

void cal(u32 *a, u32 *b, u32 *c) {
u32 sum = *a + *b;
*c = sum;

}

cal:
w1 = *(u32 *)(r1 + 0)
w2 = *(u32 *)(r2 + 0)
w2 += w1
*(u32 *)(r3 + 0) = w2
exit

cal:
r1 = *(u32 *)(r1 + 0)
r2 = *(u32 *)(r2 + 0)
r2 += r1
*(u32 *)(r3 + 0) = r2
exit

default

© 2018 NETRONOME

Solution A - 32-bit subreg ISA

 Just don’t do zero extension on the DST_REG of ALU32 at all, do them the first time DST_REG is used as 64-bit. Mark the
reg to save on later use

 Insns have 64-bit register read including: cond BPF_JMP, BPF_ALU, BPF_STX | BPF_DW

 cond JMP overhead could be reduced by introducing BPF_JMP32 insn. X86_64 and AArch64 ISA do support this

 A large portion of BPF_ALU comes from address calculation, for example calculating address of local variables.
Could potentially avoid this using verifier register type info

 Without flow analysis, when a instruction is jump destination (start of basic block), need to clear register mark. This could
possibly cause quite a few unnecessary code-gen

Benchmark Total insn Total cond JMP JMP32 Percentage

test_xdp_noinline 999 84 52 61.9%

test_l4lb_noinline 569 40 24 60.0%

© 2018 NETRONOME

Solution A - 32-bit subreg ISA

 LLVM might have better knowledge on all these, so another choice is stopping LLVM exploiting implicit zero extension and
generate it explicitly

 For explicit zero extension, we can’t use existing ALU32 MOV as otherwise we can’t differentiate it with normally MOV
which we don’t want to clear high 32bits. We will need new explicit zero-extension instruction BPF_UEXT

 But how could verifier safely know the input sequences is compiled from LLVM compiler conforming to such convention is
an issue. Could generate ELF tag, however which could be faked, therefore have potential impact on security

© 2018 NETRONOME

Solution B – Standalone DF Analyzer

6

 Work with any input sequence, for example pure ALU64 sequence. Can’t leverage LLVM’s work

 Optimistic

 Assume all ALU instructions are 32-bit safe initially

 Once find one 64-bit register use, pollute all instructions contributed to the value of this register

 Pessimistic

 Assume all ALU instructions are 64-bit initially

 Mark one ALU insn as 32-bit safe only when all the use of its definition are 32-bit

© 2018 NETRONOME

Solution B – Standalone DF Analyzer

 Amount of 32-bit use info decides amount of opportunities

 Without +alu32 code-gen, use info come from

 B/H/W STORE

 CMP-JMP if reg is zero extended

 With +alu32, all ALU32 insn could also produce use info, and analysis could finished quicker

r1 r1

r2 r2

r2 r2

r3r2

r0

r1

define use0 use1

r1 = *(u32 *)(r1 + 0)

r2 = *(u32 *)(r2 + 0)

r2 += r1

*(u32 *)(r3 + 0) = r2

exit

w2 r2

w1 r1

w1 w1

w2 …w1

r0

w2

define use0 use1

w2 = *(u32 *)(r2 + 0)

w1 = *(u32 *)(r1 + 0)

w1 += w2

call foo

exit

void bar(u32 *a, u32 *b, u32 *c) {
u32 sum = *a + *b;

}
*c = sum

*c = foo(sum)

7

© 2018 NETRONOME

Solution B – Standalone DF Analyzer

 A stand-alone, drop-and-work implementation organized as a kernel lib

 Implementation available as RFC

 Could be enhanced with previous CFG infrastructure

https://lwn.net/Articles/753724 to become a global DF analyzer

struct bpf_du_chain {
struct bpf_du_insn *insn;
struct bpf_du_chain *next;
unsigned int flags;

};

r2 r2

r1 r1

r1 r1

w2 …r1
r0

r2

define use0 use1

r2 = *(u32 *)(r2 + 0)

r1 = *(u32 *)(r1 + 0)

r1 += r2

*(u32 *)(r3 + 0) = r2

exit

struct bpf_du_insn {
struct bpf_du_chain *chain[2];
unsigned int flags;

};

bpf_df_init

run DF passes
(bpf_df_pass_32bit_safe)

bpf_df_init

copy DF result
to JIT backend

• Partition scope, mark places
introducing unknown def and use

• Scan insn sequence from start to
end, build DU chain

• Run pre-requisite pass if any
• Mark seed 32-bit insn
• Iteratively backward propagate

until reached fix-point

• Copy DF result kept as flags

• Release resources

8

© 2018 NETRONOME

Solution B – Standalone DF Analyzer

 Algorithm pseudo code for local analyzer

ext_defs[MAX_BPF_REG] = false;
// insn define the current value of R
act_defs[MAX_BPF_REG] = NULL;

bpf_df_init:
for_each_insn_in_the_sequence
if (cur_insn == jmp or call)
dst_insn.flag |= FLAG_IS_JMP_DST

for_each_insn_in_the_sequence
if (cur_insn.flag & FLAG_IS_JMP_DST)
ext_defs[0..MAX_BPF_REG] = true

if (cur_insn == call or exit or jmp)
add_unknown_use(act_def[arg_regs])
or act_defs[0..MAX_BPF_REG] = NULL

cur_insn.u2d[0] = act_defs[cur_insn.dst_reg]
act_defs[cur_insn.dst_reg].d2u.next = cur_insn;
cur_insn.u2d[1] = act_defs[cur_insn.src_reg]
act_defs[cur_insn.src_reg].d2u.next = cur_insn;

bpf_df_pass_32bit_safe:
for_each_insn_in_the_sequence
if (cur_insn == ST_B/H/W && has_single_use(cur_insn.u2d[1]))
cur_insn.u2d[1].flag |= FLAG_IS_32BIT_SAFE

else if (cur_insn == ALU32) {
if (has_single_use(cur_insn.u2d[0])
cur_insn.u2d[0].flag |= FLAG_IS_32BIT_SAFE

if (BPF_X && has_single_use(cur_insn.u2d[1])
cur_insn.u2d[1].flag |= FLAG_IS_32BIT_SAFE

}

do {
changed = false
for_each_insn_in_the_sequence
changed |= propagate_32bit_safe(cur_insn)

while (changed)

propagate_32bit_safe:
changed = false
if (!(insn.flag & FLAG_IS_32BIT_SAFE))
return false

if (insn == alu64 or alu32 except right shift) {
if (has_single_use(insn.u2d[0])
insn.u2d[0].flag |= FLAG_IS_32BIT_SAFE

if (BPF_X && has_single_use(insn.u2d[1])
insn.u2d[1].flag |= FLAG_IS_32BIT_SAFE

}
return changed;

9

© 2018 NETRONOME

Solution B – Standalone DF Analyzer

10

 Build global analyser on top of CFG infrastructure

 Split each register into hi/lo, hi0 ~ lo10, lo0 ~ lo10, do classic live variable analysis

 Calculate LiveIn and LiveOut for hi registers, meaning whether high 32-bit are live (used later) when entering and
leaving one basic block. For 32-bit safety, we care about Out(s) which could tell us the use in successor blocks

 Gen(s) function is complex than classic Gen(s) as we need insn DU chain to propagate from def to use. Can’t simply
finish initialize Gen(s) set using insn scan

Out(s) = ∪
s′ ∊ succ(s)

In(s′)

In(s) = Gen(s) ∪ (Out(s) - Kill(s))

© 2018 NETRONOME

Solution B – Standalone DF Analyzer

KERNEL/lib/bpf_core_cfg.c
KERNEL/lib/bpf_core_df.c
KERNEL/lib/bpf_core_opt_32bit.c

driver/nfp driver/arm tool/bpftool Any other places inside
kernel tree needs
eBPF insn analysis

Ideally should compile for both userspace and kernel space

userspace compilation mode

11

© 2018 NETRONOME

Solution C - Enhance Verifier DF analyzer

 Verifier has a light “DF analyzer”, designed for releasing more path prune opportunities

 It is integrated with path walker, collects and processes information while walking insn

 Fit scenarios which do not need memorize historical information, but doesn’t fit well otherwise

12

10: r6 = *(u32 *)(r10 - 4)

11: r7 = *(u32 *)(r10 - 8)

12: *(u64 *)(r10 - 16) = r6

13: *(u64 *)(r10 - 24) = r7

14: r6 += 1

15: r7 += r6

16: *(u32 *)(r10 - 28) = r7

17: r3 += r7

18: r4 = r6

19: *(u64 *)(r10 - 32) = r3

20: *(u64 *)(r10 - 40) = r4

State A

State B

State C

R4 Propagation

R3 Propagation

reg read propagation

10: r6 = *(u32 *)(r10 - 4)

11: r7 = *(u32 *)(r10 - 8)

12: *(u64 *)(r10 - 16) = r6

13: *(u64 *)(r10 - 24) = r7

14: r6 += 1

15: r7 += r6

16: *(u32 *)(r10 - 28) = r7

17: r3 += r7

18: r4 = r6

19: *(u64 *)(r10 - 32) = r3

20: *(u64 *)(r10 - 40) = r4

64-bit usage propagation

R4 Propagation

R3 Propagation

R7 Propagation

R6 Propagation

© 2018 NETRONOME

Solution C - Enhance Verifier DF analyzer

 32-bit analysis algorithm based on verifier DF analyzer

 On solution B, one insn is 32-bit safe if its definition has 32-bit use only, this requires def<->use dual link

 Verifier DF analyzer is based on code path walking, we don’t know whether all uses has been visited, so can only
build use->def singular chain

 Therefore, the algorithm is using 64-bit “polluting”. Initially all instructions are considered as 32-bit safe, then
whenever there is one 64-bit use of one definition, that insn is polluted as 64-bit

 64-bit polluting could propagate from definition to use. For example, A = B + C, definition A has 64-bit use, insn A is
polluted, uses B and C must also be 64-bit as they are forming A, therefore definition insn of B and C should be
polluted as well

13

r7 += r6

r3 += r7

*(u64 *)(r10 - 28) = r3

insn_mark_stack[stack_idx++] = insn_idx;
while (stack_idx) {
def_idx = insn_mark_stack[--stack_idx];
aux[def_idx].full_ref = true;

u2d0 = aux[def_idx].u2d[0];
if (u2d0 >= 0 && !aux[u2d0].full_ref)
insn_mark_stack[stack_idx++] = u2d0;

u2d1 = aux[def_idx].u2d[1];
if (u2d1 >= 0 && !aux[u2d1].full_ref)
insn_mark_stack[stack_idx++] = u2d1;

}

Need to pollute insns that
define r3, r6 and r7 and any
one further backward
iteratively.

© 2018 NETRONOME

Solution C - Enhance Verifier DF analyzer

 64-bit read in pruned path need to be propagated upward to parent verifier state

 But 64-bit read propagation is more complex, it won’t be screened off by a simple write and such propagation needs to be
done iteratively on all relevant registers

10: r6 = *(u32 *)(r10 - 4)

11: r4+=r3

12: *(u64 *)(r10 - 16) = r6

13: *(u64 *)(r10 - 24) = r7

14: r4 = 1

14: r6 += r4

16: r5 += r6

17: r4 += r5

18: r5 = 1

19: r4 += r5

20: *(u64 *)(r10 - 40) = r4

normal reg read
propagation

64-bit reg read
propagation

when propagation start when walking the insn when walking the insn,
but could start later when
one relevant reg identified

as 64-bit

need historical info no yes
need to record all insns

relevant to one reg

screen off any write to the reg write to the reg, but
source shouldn’t be

overlapping with the dest

affect other regs no yes

instructions involved generating r4, registers in these insns are all relevant

14

© 2018 NETRONOME

Solution C - Enhance Verifier DF analyzer

 Historical information

 Insns involved with value generation of the reg

 Because reg state is changing alone with insn walking, so should keep the state when walking the insn

 For example, r4 in insn 14 contributed to the final value of r4 used in insn 20 which is 64-bit, so it should be
propagated to parent state. Insn 15 however screened off r14, if we don’t record the reg state when walking insn 14,
we will miss this propagation

15

14: r6 += r4

15: r4 = 1

16: r5 += r6

17: r4 += r5

18: r5 = 1

19: r4 += r5

20: *(u64 *)(r10 - 40) = r4

State A

State B

struct bpf_insn_aux_data {
…
struct bpf_reg_state_lite reg_state_lite[MAX_BPF_REG];
struct bpf_verifier_state *parent_vstate;
s16 u2d[2];

}

struct bpf_reg_state_lite {
struct bpf_reg_state *parent;
u32 live;

};

insn walker could visit one insn recursively (disallowed now), or repeatedly, both would break the chain!

© 2018 NETRONOME

Solution C - Enhance Verifier DF analyzer

 Algorithm pseudo code

16

enum reg_arg_type {
SRC_OP_0,
SRC_OP64_0,
SRC_OP_1,
SRC_OP64_1,
SRC_OP64_IMP,
DST_OP,
U_DST_OP,
DST_OP_NO_MARK,
U_DST_OP_NO_MARK

};

check_reg_arg across verifier need to pass finer arg_type
depending on the position of the src and whether it is 64bit

check_reg_arg(env, insn->src_reg, SRC_OP|64_0, insn_idx);
check_reg_arg(env, insn->dst_reg, SRC_OP|64_1, insn_idx);

dst_type = no overlap between dst_reg and any src ?
U_DST_OP_NO_MARK : DST_OP_NO_MARK;

check_reg_arg(env, insn->dst_reg, dst_type, insn_idx);

check_reg_arg(reg, type, insn_idx):
rstate = cur_frame->regs + insn_idx
if (type == SRC_*) {
link_use_to_def(rstate, type, insn_idx)
mark_reg_read(… type == SRC_*64_*);

} else {
rstate->live |= REG_LIVE_WRITTEN;
if (t == U_DST_OP || t == U_DST_OP_NO_MARK)
rstate->live |= REG_LIVE_WRITTEN_UNIQUE;

…
rstate->def_insn_idx = insn_idx;
if (insn_idx != INVALID_INSN_IDX)
copy_reg_state_lite(insn_aux[insn_idx].regs_lite, regs);

}

link_reg_to_def(rstate, type, insn_idx):
slot_idx = 0 or 1 depending on type
def_idx = rstate->def_insn_idx;
insn_aux_data[insn_idx].u2d[slot_idx] = def_idx;

mark_reg_read:
…
if (!64bit_read)
return;

return mark_reg_read64(…)

mark_reg_read64:
while (parent) {
if (writes &&

state->live &
REG_LIVE_WRITTEN_UNIQUE)

break;
parent->live |= REG_LIVE_READ64;
state = parent;
parent = state->parent;
writes = true;

}
if (no_mark_insn)
return;

return mark_insn_64bit(def_idx);

mark_insn_64bit:
insn_mark_stack[stack_idx++] = insn_idx;
while (stack_idx) {
def_idx = insn_mark_stack[--stack_idx];
aux[def_idx].full_ref = true;

u2d0 = aux[def_idx].u2d[0];
if (u2d0 >= 0 && !aux[u2d0].full_ref) {
insn_mark_stack[stack_idx++] = u2d0;
mark_reg_read64(aux[def_idx].u2d0.dst_reg,

no_mark_insn)
}

u2d1 = aux[def_idx].u2d[1];
if (u2d1 >= 0 && !aux[u2d1].full_ref) {
insn_mark_stack[stack_idx++] = u2d1;
mark_reg_read64(aux[def_idx].u2d1.dst_reg,

no_mark_insn)
}

}

© 2018 NETRONOME

Which approach to go?

 Verifier

 Better to focus on verification, offer reliable and fast verification, no bothering of optimization

 DF analysis based on dynamic insn walking requires recording historical information

 Path prune however make it very difficult to collect such information on such scope

 Classic CFG + DF analysis

 Reliable and has sophisticated algorithms

 Redo LLVM’s work, heavy for kernel space

 Reuse information passed down from LLVM through 32-bit subreg ISA

 Throw the heavy lift work to user space static compiler who is also really good at

 Lack of some instructions (JMP32 etc) is causing trouble

 Best to follow this approach and enhance eBPF ISA ?

17

Thank you!

