
- Update on Cilium with tcx & netkit
- Revamping global socket iterator

Daniel Borkmann (Cisco)

LSF/MM/BPF 2024

tcx: What’s done

2

tcx datapath infra was merged and released with 6.6 kernel

bpf prog

TCX_DROP

BPF prog

TCX_NEXT

tc {ingress,egress}

(“bpf_mprog” array)

https://lore.kernel.org/all/20230719140858.13224-1-daniel@iogearbox.net/

tcx: What’s done

3

cilium/ebpf support was merged (thanks to Lorenz!)

- Goal: BPF program management for direct or link-based attachment

https://github.com/cilium/ebpf/pull/1163

netkit: What’s done

4

Quick tl;dr

tput as high as host
latency as

low as host

netkit: What’s done

5

netkit driver was merged and released with 6.7 kernel

CONFIG_NETKIT=y (bool) is set by default in latest Ubuntu 24.04 LTS !

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/drivers/net/netkit.c?id=35dfaad7188cdc043fde31709c796f5a692ba2bd
https://discourse.ubuntu.com/t/introducing-kernel-6-8-for-the-24-04-noble-numbat-release/41958

netkit: What’s done

6

iproute2 support was merged and released with iproute2 v6.8.0

- Goal: Basic device setup and introspection support

- Support base setup and delegate BPF program management to applications (via libbpf, ebpf-go)

https://git.kernel.org/pub/scm/network/iproute2/iproute2.git/commit/?id=e4956e7f1fd9bb8d8bf74947c32ac381e19b96ec
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=05c31b4ab205

netkit: What’s done

7

vishvananda/netlink support was merged (thanks to Bytedance!)

- Goal: Native iproute2 equivalent for Go, that is, basic device setup and introspection support

https://github.com/vishvananda/netlink/pull/930

netkit: What’s done

8

cilium/ebpf support was merged (thanks to Datadog!)

- Goal: BPF program management for direct or link-based attachment, same look & feel as tcx

https://github.com/cilium/ebpf/pull/1257

netkit: What’s done

9

Fixing networking stats for netkit in general and for peer-redirection

- Goal: Proper network stats accounting for cAdvisor for netkit and veth

- Fix is calling dev_sw_netstats_rx_add() in skb_do_redirect() and move netkit & veth to dev->tstats
- Guard if drivers implementing ndo_get_peer_dev and do not use dev->tstats
- Suggestion from Jakub Kicinski to move {l,t,d}stats allocation into net core

Patches: bpf_redirect_peer fixes, v3 (Daniel Borkmann, Jakub Kicinski, Nikolay Aleksandrov, Peilin Ye)

https://lore.kernel.org/bpf/20231114004220.6495-1-daniel@iogearbox.net/

netkit: What’s done

10

Fast-path optimising getting peer pointer from struct net_device

- Goal: Get rid of ndo_get_peer_dev entirely and add peer pointer to net_device (suggestion from Jakub Kicinski)

- The latter is only implemented by veth and netkit
- Helps performance for ingress direction due to the current indirect call in skb_do_redirect()

netkit: What’s done

11

Fast-path optimising getting peer pointer from struct net_device

- Goal: Get rid of ndo_get_peer_dev entirely and add peer pointer to net_device (suggestion from Jakub Kicinski)

- The latter is only implemented by veth and netkit
- Helps performance for ingress direction due to the current indirect call in skb_do_redirect()

Possible given CONFIG_NETKIT is bool

Cilium & tcx: What’s done

12

Integration and merge for Cilium 1.16 with tcx complete

- Enabled by default for 6.6+ kernels, opt-out to old style tc possible
- Now all Cilium attachments are BPF link based (XDP, tcx, cgroups)!

Cilium & tcx: What’s done

13

Seamless up/downgrade path:

Update or attach tcx link

Removal of old-style tc filters

Attachment of old-style tc
filters

Removal of tcx link

Cilium & tcx: What’s done

14

Attachment as “last”:

- Observability programs can attach in front of Cilium
- Cilium terminates tcx and does not enter into legacy tc

...

Attachment of tcx link
at tail

Cilium & tcx: What’s done

15

Minor gotchas:

- Programs worked as-is, only tc_classid had to be zeroed explicitly in our code base
- With that all connectivity tests passed & we were able to merge it

Cilium & netkit: What’s ongoing

16

Integration and merge for Cilium 1.16 planned

- Goal: Last step of final Cilium integration via --datapath-mode={veth,netkit,netkit-l2}

- netkit: L3 mode, default peer policy if no BPF is attached: drop
- netkit-l2: Same as above but L2 mode

Cilium & netkit: What’s ongoing

17

“netkit-l2” mode:

- Working but ran into two issues which needed netkit changes
 - Setting mac addresses in the driver (easy, patch coming)

https://github.com/cilium/linux/commit/b53374dc910d143a66842921f3104f3602f9d82e

Cilium & netkit: What’s ongoing

18

“netkit-l2” mode:

- Working but ran into two issues which needed netkit changes
 - Setting mac addresses in the driver (easy, patch coming)

https://github.com/cilium/linux/commit/b53374dc910d143a66842921f3104f3602f9d82e

Cilium & netkit: What’s ongoing

19

“netkit-l2” mode:

- Working but ran into two issues which needed netkit changes
 - Setting mac addresses in the driver (easy, patch coming)

https://github.com/cilium/linux/commit/b53374dc910d143a66842921f3104f3602f9d82e

Cilium & netkit: What’s ongoing

20

“netkit-l2” mode:

- Working but ran into two issues which needed netkit changes
 - Setting mac addresses in the driver (easy, patch coming)
 - Respecting setting skb->pkt_type from BPF program

https://github.com/cilium/linux/commit/b53374dc910d143a66842921f3104f3602f9d82e

Cilium & netkit: What’s ongoing

21

“netkit-l2 mode:

- Working but ran into two issues which needed netkit changes
 - Setting mac addresses in the driver (easy, patch coming)
 - Respecting setting skb->pkt_type from BPF program pkt_type = PACKET_HOST

(via skb scrubbing)

pkt_type = xyz

pkt_type =
PACKET_OTHERHOST

pkt_type =
PACKET_OUTGOING

Causes L7 proxy test failures in
Cilium!

https://github.com/cilium/linux/commit/b53374dc910d143a66842921f3104f3602f9d82e

Cilium & netkit: What’s ongoing

22

“netkit-l2” mode:

- Working but ran into two issues which needed netkit changes
 - Setting mac addresses in the driver (easy, patch coming)
 - Respecting setting skb->pkt_type from BPF program (only relevant here in netkit-l2)
 - Options:
 - In BPF program copy dst MAC to MAC of host device (retains PACKET_HOST)
 - Do eth_type_trans() before invoking BPF, needs skb push/pull dance
 - Detect that BPF program set pkt_type and override after eth_type_trans()
 - Remove eth_type_trans() and push responsibility into BPF program,
 just do skb pull in driver if BPF otherwise eth_type_trans() if no BPF

https://github.com/cilium/linux/commit/b53374dc910d143a66842921f3104f3602f9d82e

Cilium & netkit: What’s ongoing

23

“netkit” mode:

- Next step after netkit-l2 is working
- Given L3 mode, BPF ARP responder needs to be compiled out
- Also all netkit-related MACs are zeroed (CNI records them, currently crashes with all-zero MAC - tbd)
- From datapath PoV ETH_HLEN still remains at 14
- BPF remains the same, except for local Pod-Pod: s/bpf_redirect_peer/bpf_redirect/
- Traffic to external must use bpf_redirect_neigh to populate L2

netkit: Future work

24

Experimenting with head/tailroom customization

- Goal: Being able to control dev->needed_headroom and dev->needed_tailroom

- Could benefit datapath performance under tunneling (vxlan, geneve) or encryption (wireguard)
 - Potentially avoids pskb_expand_head() reallocation costs

- Idea: Have actual IFLA_HEADROOM and IFLA_TAILROOM attributes to dump and set on a device
- needed_{head,tail}room is by default 0, vxlan/geneve adjusts needed_headroom, wireguard also needed_tailroom
- Performance benefit: to be measured, references from old patches mention costs around 5% on realloc

WIP: head/tailroom getter/setter in rtnetlink

netkit
(primary)

netkit
(peer)

needed_{head,tail}
room update then
propagates to peer.

https://lore.kernel.org/netdev/d8c2af0a398ed201064f39a348a55451bf34cd37.1512052527.git.pabeni@redhat.com/
https://github.com/cilium/linux/commits/pr/netkit2

netkit: Future work

25

Adding new ndo for setting dev->gso_{ipv4,}_max_size

- Goal: Enabling BIG TCP for Pods without having to restart Pods

- Cilium agent is not able to exec into the Pod’s netns at runtime and mounting host procfs into Cilium container
 is not desired (security reasons). Only the Cilium CNI plugin has access when setting up devices.

- Downside: Enabling BIG TCP on an existing cluster requires restart of application Pod
- New ndo for updating dev->gso_{ipv4,}_max_size in similar style as dev->needed_{head,tail}room would
 be desirable.. e.g. picks max of primary/peer and applies it to both

netkit
(primary)

netkit
(peer)

gso_{ipv4,}_max_size
update then

propagates to peer.

netkit: Future work

26

Implement ndo_change_mtu for netkit

- Goal: Changing MTU on primary without needing to change on peer

- Cilium agent is not able to exec into the Pod’s netns at runtime and mounting host procfs into Cilium container
 is not desired (security reasons). Only the Cilium CNI plugin has access when setting up devices.

netkit
(primary)

netkit
(peer)

Update MTU and
propagate MTU to

peer.

https://elixir.bootlin.com/linux/latest/C/ident/ndo_change_mtu

netkit: Future work

27

netkit and AF_XDP support

- Goal: 100G+ tput via AF_XDP with netkit without pulling in all the XDP infra into the driver. If these speeds can
be achieved, then it would be more advantageous than SRIOV given there is still possibility of visibility / policy
enforcement via BPF

Qemu now has native AF_XDP support:

"-netdev
af-xdp,id=str,ifname=name[,mode=native|skb][,force-copy=on|off][,queues=n][,start-queue=m][,inhibit=on|off][,sock-fds=x:y:...:z]"

netkit
(primary)

Pod

VM / Qemu (AF_XDP)
netkit
(peer)

phys
(AF_XDP)

“Global socket iterator”

28

Problem: TCP/UDP connect binds VIP to backend, backend terminates, but application
 does not receive feedback for it. Stays connected, worst case: backend IP reuse.

Last attempt presented in LSF/MM/BPF 2023:

- Part 1: socket destroy kfunc
- Part 2: Iterator over netns’es given Cilium agent does not have access to Pod netns’es

http://vger.kernel.org/bpfconf2023_material/aditi-bpf-sockets-iterator.pdf
https://lore.kernel.org/bpf/20230519225157.760788-1-aditi.ghag@isovalent.com/

“Global socket iterator”

29

In Cilium: Only solved in hostns today (via SOCK_DESTROY through DIAG infra)

“Global socket iterator”

30

Problem: TCP/UDP connect binds VIP to backend, backend terminates, but application
 does not receive feedback for it. Stays connected, worst case: backend IP reuse.

Last attempt presented in LSF/MM/BPF 2023:

- Part 1: socket destroy kfunc (Cilium upgraded to LLVM 17 few weeks ago, last blocker for kfuncs gone)
- Part 2: Iterator over netns’es given Cilium agent does not have access to Pod netns’es

Possible options:

 - Plumb global flag for bpf_iter_attach_opts (LSF/MM/BPF 2023): not flexible enough
 - Socket connect() call records {backendIP/port + socket address or cookie} -> {socket kptr} in hash map
 and upon destruction we iterate hash map, fetch kptr and destroy socket
 - Downside: needs to hold reference on socket
 - Sockmap as storage which does not need to hold reference, but installs psock and might have other bumps
 - Open-coded netns iterator and then we feed netns pointer into open-coded socket iterator

http://vger.kernel.org/bpfconf2023_material/aditi-bpf-sockets-iterator.pdf
https://lore.kernel.org/bpf/20230519225157.760788-1-aditi.ghag@isovalent.com/

netns iterator

31

Slow-path example upon backend termination event:

SEC("fentry/" SYS_PREFIX "sys_getpgid")
int foo_nested(void *ctx)
{

struct task_struct *cur_task = bpf_get_current_task_btf();
struct sock_common *skc;
struct net *net;

if (cur_task->pid == target_pid) {
bpf_for_each(net, net) {

bpf_for_each(tcp, skc, net) {
if (bpf_get_socket_cookie(skc) == cookie) {

bpf_sock_destroy(skc);
}

}
}

}
return 0;

}

netns iterator

32

Can be used in
sleepable /
non-sleepable
programs.

netns iterator

33

netns iterator

34

Open TODOs:

net argument required to be trusted input argument:

bpf_for_each(net, net)
bpf_for_each(tcp, skc, net)

- Refcount handling is part of bpf_iter_net_new() / bpf_iter_net_destroy()
- Either bpf_iter_net_next() described as KF_RET_TRUSTED or we assign obj id as if it was refcounted (tbd)
- Still needs TCP/UDP socket iterator conversion to open-coded iterator as next step

Thank you! Questions?

github.com/cilium/cilium tcx BPF datapath

netkit devices

Open coded iterators for netns

http://github.com/cilium/cilium
https://lore.kernel.org/bpf/20230719140858.13224-1-daniel@iogearbox.net/
https://lore.kernel.org/bpf/20231024214904.29825-1-daniel@iogearbox.net/
https://github.com/cilium/linux/tree/pr/misc-patches

