

BPF struct_ops
new features driven by sched_ext in last
few months

Kui-Feng Lee

Related Projects
● In last few months, struct_ops were driven by

it’s applications a lot.
● sched_ext is very active
● Fuse-BPF
● BPF qdisc

Quick Introduction
● With struct_ops, you, as a module or a

subsystem, can call operators of an interface.
And, the interface has been implemented in
BPF as struct_ops maps.

 struct dummy_ops {
 int (*add)(int v1, int v2);
 int (*sub)(int v1, int v2);
 }

Int dummy_ops__reg(void *kdata)
{
 struct dummy_ops *ops = kdata;
 Int v;

 if (ops->add) {
 v = ops->add(7, 8);
 if (v != 15)
 return -EINVAL;
 }
 if (ops->sub) {
 v = ops->sub(7, 8);
 if (v != -1)
 return -EINVAL;
 }
 return 0;
}

Object 1
Object 2

…

subsystem/module

syscall

User Space
Application

bpf()
reg()

unreg()

add

delstruct_ops map

New Features
● sched_ext has driven a lot of new features of struct_ops
● Last few months

– Shadow variables
– Null arguments
– Large number of programs (operators)
– Use struct_ops from kernel modules
– Epoll & link detachment
– … more

Shadow variables
● Previous, the following were not allowed

through skeletons
– Change the values of data fields
– Assign functions to operators

struct dummy_ops {
 int flags;
 int (*start)(void);
};

SEC(“.struct_ops.link”)
struct dummy_ops my_ops = {
 .flags = 0x10,
 .start = (void*)&my_start,
};

What subsystems should do

struct dummy_ops {
 int flags;
 int (*start)(void);
};

int dummy_ops_init_member(const struct btf_type *t,
 const struct btf_member *member,
 void *kdata, const void *udata)
{
 if (member->offset = offsetof(struct dummy_ops, flags) * 8) {
 ((struct dummy_ops *)kdata)->flags =
 ((struct dummy_ops *)udata)->flags;
 return 1;
 }
 return 0;
}

struct dummy_ops my_dummy_ops = {
 ……
 .init_member = dummy_ops_init_member,
 …...
};

What user space should do
/* dummy_ops_prog.c */
int first_start(void) { … }
int second_start(void) { … }

SEC(“.struct_ops.link”)
struct dummy_ops dummy_1 = {
 .flags = 0x10,
 .start = &first_start
};

/* loader.c */
skel = dummy_ops_prog__open();
skel->struct_ops.dummy_1->flags |= 0x3;
skel->struct_ops.dummy_1->start = skel->progs.second_start;
err = struct_ops_module__load(skel);

Null arguments
● All arguments were trusted previously.
● Passing a null pointer to a struct_ops operator

might cause a crash.

Annotate arguments
● You can annotate an argument as nullable to

pass a null pointer.
● The verifier enforces BPF programs check the

pointer before accessing the buffer.

What subsystems should do
struct bpf_testmod_ops {
 ……
 int (*test_maybe_null)(int, struct task_struct *),
 ……
};

int bpf_testmod_ops__test_maybe_null(int dummy,
 struct task_struct *task__nullable)
{
 return 0;
}

struct bpf_testmod_ops __bpf_testmod_ops = {
 ……
 .test_maybe_null = bpf_testmod_ops__test_maybe_null,
 ……
};

struct bpf_struct_ops testmod_ops = {
 ……
 .cfi_stubs = &__bpf_testmod_ops,
 ……
};

cfi stub

BPF Program

int maybe_null_op(int dummy, struct task_struct *task) {
 …...
 if (task)
 use_pid(task->pid);
 …...
}

Large number of programs
● All trampolines of operators in a struct_ops map

should be in a memory page.
● You could have less than 20 operators with

x86_64 platform.
● Now, it supports up to 8 pages for trampolines

of a struct_ops map.

struct_ops from modules
● Kernel modules can now define their struct_ops

types and receives struct_ops objects of these
types.

● selftests/bpf/bpf_testmod.c is a good example.

struct bpf_struct_ops bpf_bpf_testmod_ops = {
.verifier_ops = &bpf_testmod_verifier_ops,
.init = bpf_testmod_ops_init,
.init_member = bpf_testmod_ops_init_member,
.reg = bpf_dummy_reg,
.unreg = bpf_dummy_unreg,
.cfi_stubs = &__bpf_testmod_ops,
.name = "bpf_testmod_ops",
.owner = THIS_MODULE,

};

static int bpf_testmod_init(void)
{
 …...

ret = register_bpf_struct_ops(&bpf_bpf_testmod_ops, bpf_testmod_ops);
 …...
}

Compatibility
● APIs/types evolve over time.
● struct_ops types may add operators or

arguments.

Extra arguments
● Add one or more arguments to an existing

operator
● Run an old implementation with a new kernel
● The signature has been changed
● The verifier checks behavior, not signature

/* v1 */
struct player {
 int (*play)(int track),
}

/* v2 */
struct player {
 int (*play)(int track, int volume),
}

New operators
● Add new operators to an existing struct_ops type.
● A type in the kernel has more fields/operators than the

corresponding types in BPF programs.
● Libbpf would reset these additional fields/operators to

0s before loading the struct_ops map.
● Libbpf would ignore zeroed additional fields absent in

the kernel (values are 0s)

/* player_v1.c */
struct player {
 int (*play)(int track);
};

SEC(“.struct_ops.link”)
struct player player_old = {
 .player = (void *)player_play,
};

/* player_v2.c */
struct player {
 int (*play)(int track);
 int (*stop)(void);
};

SEC(“.struct_ops.link”)
struct player player_new = {
 .player = (void *)player_play,
 .stop = NULL,
};

● Load player_v1.c with the v2 kernel
● Load player_v2.c with the v1 kernel if stop is

NULL

Types with suffices
● Libbpf would skip the suffices in the pattern

“___XXXX” (3 underlines)
● “player___v1” and “player___v2” would be mapped

to “player” in the kernel.
● Enable developers to has multiple definitions for the

same struct_ops type
● Thanks to Eduard Zingerman

struct player_v1 {
 int (*play)(int track);
};

struct player_v2 {
 int (*play)(int track);
 int (*stop)(void);
};

SEC(“.struct_ops.link”)
struct player_v1 player_old = {
 .player = (void *)player_play,
};

SEC(“.struct_ops.link”)
struct player_v2 player_new = {
 .player = (void *)player_play,
 .stop = (void *)player_stop,
};

What is on the way

Epoll
● Send EPOLLHUP if a struct_ops link has been

detached.
● Why?

– Modules & subsystems may proactively deactivate
struct_ops objects registered to them.

– User space programs may want to know the
deactivation.

Epoll with detachment
● You can detach a struct_ops link from user

space programs
● Kernel modules or subsystems can detach a

struct_ops link as well. (deactivate a struct_ops
object)

What subsystems should do
● Receive an additional argument from

reg()/update()/unreg().
– A pointer to a bpf link

struct bpf_struct_ops {
 …...

int (*reg)(void *kdata, struct bpf_link *link);
void (*unreg)(void *kdata, struct bpf_link *link);
int (*update)(void *kdata, void *old_kdata, struct bpf_link *link);

 …...
};

__bpf_kfunc int bpf_dummy_do_link_detach(void)
{

struct bpf_link *link;
int ret = -ENOENT;

spin_lock(&detach_lock);
link = link_to_detach;
/* Make sure the link is still valid by increasing its refcnt */
if (link && IS_ERR(bpf_link_inc_not_zero(link)))

link = NULL;
spin_unlock(&detach_lock);

if (link) {
ret = link->ops->detach(link);
bpf_link_put(link);

}

return ret;
}

What user space progs should do

skel = struct_ops_detach__open_and_load();
link = bpf_map__attach_struct_ops(skel->maps.testmod_do_detach);
fd = bpf_link__fd(link);

epollfd = epoll_create1(0);
ev.events = EPOLLHUP;
ev.data.fd = fd;
err = epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev);
if (!ASSERT_OK(err, "epoll_ctl"))

goto cleanup;

/* Wait for EPOLLHUP */
nfds = epoll_wait(epollfd, events, 2, 500);

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

