Paravirt Scheduling with BPF

Vin thPII th@btbvtw rd.org>
Jo IF d | el@joelfernandes.org>

Google

mailto:vineeth@bitbyteword.org
mailto:joel@joelfernandes.org

A little background

e Double scheduling: Host schedules vcpu threads and the guest schedules the
tasks running inside the guest

e But both schedulers are unaware of the other
o Hosts schedules vcpu threads without knowing what's being run on the vcpu
o Guest schedules tasks without knowing where the vcpu is running physically

e VCPUs areregular CFS tasks in the host and does not get to runin a timely
fashion when the host is experiencing load

e Host scheduler tries to be fair and doesn’t know about the priority requirements

e This can cause issues with latencies, power consumption, resource utilization
etc.

Paravirt Scheduling

e Cooperative scheduling framework where host and guest shares scheduling
related information for making optimal scheduling decisions (priority, placement
etc).

Shared memory setup between guest and host for communication.
e Paravirt scheduling protocol
o shared memory layout, details of information shared, scheduling policy decisions etc

e During guest boot up, guest and host go through a handshake process to
determine the protocol, communicating the shared memory address etc

e Once the handshake is successful, scheduling information is shared and
scheduling decisions are taken based on the information and policies defined.

Paravirt Scheduling: Shared memory page

e Dividedinto threeregions
o Header
m Information about the protocol id, version etc
o Guest Area
m Information populated by guest and read by host
o Host Area
m Information populated by host and read by guest

e Guest allocates the page and shares the GFN with host counterpart

Paravirt Scheduling: History

e V1:https:/Ikml.org/lkml|/2023/12/13/1789
o Kvmdoes most of the heavy lifting: handshake, policies, scheduling decision
o Upstream was against having all these logic in kvm

e V2:https:/lwn.net/Articles/968242/
o Kvmdoes the handshake with the guest
o Policy and scheduling decision designed to be implemented separately as a kernel
module or a BPF program
o module/BPF registers to kvm for receiving callbacks on interested events
o Kvm maintainers does not like the idea of having the handshake also in kernel
e V3:(inworks)
o Handshake in the VMM
o Policies and scheduling decisions in a BPF program (loaded by the VMM)
m Could be akernel module as well

https://lkml.org/lkml/2023/12/13/1789
https://lwn.net/Articles/968242/

Paravirt Scheduling: A sample use case

e Latency sensitive guest workloads
o When guest is about to run a latency sensitive workload, it updates the guest area in the
shared memory requesting host not to schedule it out.
o Guest continues running until a VMEXIT.
o Immediately on VMEXIT, host see the guest request and boosts the vcpu task priority. It also
updates the host area with the decision it took.
e Interrupt Injection

o During aninterrupt injection, host proactively boosts the the vcpu tasks priority and
updates the host area with the action.

V3 Design

most Userland

thread thread thread thread

\

Host Kernel

V3 Design : BPF program

e Receives required information from the VMM through maps
o Shared memory address (GFN)
o Pids and cpuids of the vcpus

e Registersto kvm for callbacks on interested events
o VMEXIT,VMENTRY, HALT, Interrupt injection etc
e |Implements the policies and executes scheduling decisions on callbacks

BPF Program: Kvm Callbacks

e struct_ops?
e Rawtrace points?
o Internaltrace points in kvm not exposed to userland

BPF Program: Shared memory

e VMM receives the PFN from guest and passes it on to BPF program
e GFNto PFN conversion helpersin BPF?
o Useakfuncwrapper of the kvm helper

BPF Program: Scheduler hooks

e BPF program needs to call scheduler APIs for priority management and placement
o sched_setscheduler(), ...
e kfunc?

