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A little background

● Double scheduling: Host schedules vcpu threads and the guest schedules the 
tasks running inside the guest

● But both schedulers are unaware of the other
○ Hosts schedules vcpu threads without knowing what's being run on the vcpu
○ Guest schedules tasks without knowing where the vcpu is running physically

● vCPUs are regular CFS tasks in the host and does not get to run in a timely 
fashion when the host is experiencing load

● Host scheduler tries to be fair and doesn’t know about the priority requirements
● This can cause issues with latencies, power consumption, resource utilization 

etc.



Paravirt Scheduling

● Cooperative scheduling framework where host and guest shares scheduling 
related information for making optimal scheduling decisions (priority, placement 
etc).

● Shared memory setup between guest and host for communication.
● Paravirt scheduling protocol

○ shared memory layout, details of information shared, scheduling policy decisions etc

● During guest boot up, guest and host go through a handshake process to 
determine the protocol, communicating the shared memory address etc

● Once the handshake is successful, scheduling information is shared and 
scheduling decisions are taken based on the information and policies defined.



Paravirt Scheduling: Shared memory page

● Divided into three regions
○ Header

■ Information about the protocol id, version etc

○ Guest Area
■ Information populated by guest and read by host

○ Host Area
■ Information populated by host and read by guest

● Guest allocates the page and shares the GFN with host counterpart



Paravirt Scheduling: History

● V1: https://lkml.org/lkml/2023/12/13/1789
○ Kvm does most of the heavy lifting: handshake, policies, scheduling decision
○ Upstream was against having all these logic in kvm

● V2: https://lwn.net/Articles/968242/
○ Kvm does the handshake with the guest
○ Policy and scheduling decision designed to be implemented separately as a kernel 

module or a BPF program
○ module/BPF registers to kvm for receiving callbacks on interested events
○ Kvm maintainers does not like the idea of having the handshake also in kernel

● V3: (in works)
○ Handshake in the VMM
○ Policies and scheduling decisions in a BPF program (loaded by the VMM)

■ Could be a kernel module as well

https://lkml.org/lkml/2023/12/13/1789
https://lwn.net/Articles/968242/


Paravirt Scheduling: A sample use case

● Latency sensitive guest workloads
○ When guest is about to run a latency sensitive workload, it updates the guest area in the 

shared memory requesting host not to schedule it out.

○ Guest continues running until a VMEXIT.

○ Immediately on VMEXIT, host see the guest request and boosts the vcpu task priority.  It also 

updates the host area with the decision it took.

● Interrupt Injection
○ During an interrupt injection, host proactively boosts the  the vcpu tasks priority and 

updates the host area with the action.
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V3 Design : BPF program

● Receives required information from the VMM through maps
○ Shared memory address (GFN)

○ Pids and cpuids of the vcpus

● Registers to kvm for callbacks on interested events
○ VMEXIT, VMENTRY, HALT, Interrupt injection etc

● Implements the policies and executes scheduling decisions on callbacks



BPF Program: Kvm Callbacks

● struct_ops ?

● Raw trace points ?
○ Internal trace points in kvm not exposed to userland



BPF Program: Shared memory

● VMM receives the PFN from guest and passes it on to BPF program

● GFN to PFN conversion helpers in BPF?

○ Use a kfunc wrapper  of the kvm helper



BPF Program: Scheduler hooks

● BPF program needs to call scheduler APIs for priority management and placement
○ sched_setscheduler(), …

● kfunc?


