
Paravirt Scheduling with BPF

Vineeth Pillai <vineeth@bitbyteword.org>
Joel Fernandes <joel@joelfernandes.org>

mailto:vineeth@bitbyteword.org
mailto:joel@joelfernandes.org

A little background

● Double scheduling: Host schedules vcpu threads and the guest schedules the
tasks running inside the guest

● But both schedulers are unaware of the other
○ Hosts schedules vcpu threads without knowing what's being run on the vcpu
○ Guest schedules tasks without knowing where the vcpu is running physically

● vCPUs are regular CFS tasks in the host and does not get to run in a timely
fashion when the host is experiencing load

● Host scheduler tries to be fair and doesn’t know about the priority requirements
● This can cause issues with latencies, power consumption, resource utilization

etc.

Paravirt Scheduling

● Cooperative scheduling framework where host and guest shares scheduling
related information for making optimal scheduling decisions (priority, placement
etc).

● Shared memory setup between guest and host for communication.
● Paravirt scheduling protocol

○ shared memory layout, details of information shared, scheduling policy decisions etc

● During guest boot up, guest and host go through a handshake process to
determine the protocol, communicating the shared memory address etc

● Once the handshake is successful, scheduling information is shared and
scheduling decisions are taken based on the information and policies defined.

Paravirt Scheduling: Shared memory page

● Divided into three regions
○ Header

■ Information about the protocol id, version etc

○ Guest Area
■ Information populated by guest and read by host

○ Host Area
■ Information populated by host and read by guest

● Guest allocates the page and shares the GFN with host counterpart

Paravirt Scheduling: History

● V1: https://lkml.org/lkml/2023/12/13/1789
○ Kvm does most of the heavy lifting: handshake, policies, scheduling decision
○ Upstream was against having all these logic in kvm

● V2: https://lwn.net/Articles/968242/
○ Kvm does the handshake with the guest
○ Policy and scheduling decision designed to be implemented separately as a kernel

module or a BPF program
○ module/BPF registers to kvm for receiving callbacks on interested events
○ Kvm maintainers does not like the idea of having the handshake also in kernel

● V3: (in works)
○ Handshake in the VMM
○ Policies and scheduling decisions in a BPF program (loaded by the VMM)

■ Could be a kernel module as well

https://lkml.org/lkml/2023/12/13/1789
https://lwn.net/Articles/968242/

Paravirt Scheduling: A sample use case

● Latency sensitive guest workloads
○ When guest is about to run a latency sensitive workload, it updates the guest area in the

shared memory requesting host not to schedule it out.

○ Guest continues running until a VMEXIT.

○ Immediately on VMEXIT, host see the guest request and boosts the vcpu task priority. It also

updates the host area with the decision it took.

● Interrupt Injection
○ During an interrupt injection, host proactively boosts the the vcpu tasks priority and

updates the host area with the action.

V3 Design

Host Userland

Host Kernel

VMM
Guest Userland

Guest Kernel
pvsched driver

KVM

pvsched-device process VMM main thread

BPF
program

vcpu1
thread

vcpu2
thread

vcpu3
thread

vcpu4
thread

Scheduler

Other device processes

V3 Design : BPF program

● Receives required information from the VMM through maps
○ Shared memory address (GFN)

○ Pids and cpuids of the vcpus

● Registers to kvm for callbacks on interested events
○ VMEXIT, VMENTRY, HALT, Interrupt injection etc

● Implements the policies and executes scheduling decisions on callbacks

BPF Program: Kvm Callbacks

● struct_ops ?

● Raw trace points ?
○ Internal trace points in kvm not exposed to userland

BPF Program: Shared memory

● VMM receives the PFN from guest and passes it on to BPF program

● GFN to PFN conversion helpers in BPF?

○ Use a kfunc wrapper of the kvm helper

BPF Program: Scheduler hooks

● BPF program needs to call scheduler APIs for priority management and placement
○ sched_setscheduler(), …

● kfunc?

