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History

● “Towards a BPF Memory Model”, LPC 2021
– https://lpc.events/event/11/contributions/941/ 

● Kangrejos 2023 Hallway Track (with Jose Marchesi)
● “Instruction-Level BPF Memory Model”, IETF 118

– https://datatracker.ietf.org/doc/agenda-118-bpf/ 
– https://datatracker.ietf.org/meeting/118/materials/slides-118-bpf-bpf-memory-model-00

● “BPF Memory Model, Two Years On”, LPC 2023
– https://lpc.events/event/17/contributions/1580/ 

● “Instruction-Level BPF Memory Model”, living Google Document
– https://docs.google.com/document/d/1TaSEfWfLnRUi5KqkavUQyL2tThJXYWHS15qcbxIsFb0/edit?

usp=sharing
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History

● “Towards a BPF Memory Model”, LPC 2021
– https://lpc.events/event/11/contributions/941/ 

● Kangrejos 2023 Hallway Track (with Jose Marchesi)
● “Instruction-Level BPF Memory Model”, IETF 118

– https://datatracker.ietf.org/doc/agenda-118-bpf/ 
– https://datatracker.ietf.org/meeting/118/materials/slides-118-bpf-bpf-memory-model-00

● “BPF Memory Model, Two Years On”, LPC 2023
– https://lpc.events/event/17/contributions/1580/ 

● “Instruction-Level BPF Memory Model”, living Google Document
– https://docs.google.com/document/d/1TaSEfWfLnRUi5KqkavUQyL2tThJXYWHS15qcbxIsFb0/edit?

usp=sharing What m
ore could possibly be 

needed???
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Where Is the BPF Memory Model?

● Overall direction set in 2021
● Informal instruction-level ordering in late 2023
● We still need:

– Formal definition and tools
● Including comparison against hardware models

– An official IETF standard for BPF memory model
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Review of Informal Model
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Review of Informal Model

● BPF Atomic Instructions
● BPF Conditional Jump Instructions
● BPF Load instructions
● BPF Memory-Reference Instructions
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BPF Atomic Instructions

● BPF_XCHG, BPF_CMPXCHG
● BPF_ADD, BPF_OR, BPF_AND, BPF_XOR
● BPF_FETCH with one of the above



9

BPF Atomic Instructions 1/3

● BPF_XCHG and BPF_CMPXCHG instructions are fully ordered
● All CPUs and tasks agree that all instructions preceding or following 

a given BPF_XCHG or BPF_CMPXCHG instruction are ordered before 
or after, respectively, that same instruction
– Consistent with Linux-kernel atomic_xchg() and 
atomic_cmpxchg(), respectively

– Alternatively, consistent with the following:
● smp_mb(); atomic_cmpxchg_relaxed(); smp_mb();
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BPF Atomic Instructions 2/3

● BPF_ADD, BPF_OR, BPF_AND, BPF_XOR 
instructions are unordered

● CPUs and JITs can reorder these instructions freely
– Consistent with Linux-kernel 
atomic_add(), atomic_or(), 
atomic_and(), and atomic_xor() APIs
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BPF Atomic Instructions 3/3

● When accompanied by BPF_FETCH, BPF_ADD, BPF_OR, 
BPF_AND, BPF_XOR instructions are fully ordered

● All CPUs and tasks agree that all instructions preceding or 
following a given instruction adorned with BPF_FETCH are 
ordered before or after, respectively, that same instruction
– Consistent with Linux-kernel atomic_fetch_add(), 
atomic_fetch_or(), atomic_fetch_and(), and 
atomic_fetch_xor() APIs
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BPF Conditional Jump Instructions

● Modifiers to BPF_JMP32 and BPF_JMP instructions:
– BPF_JEQ, BPF_JGT, BPF_JGE, BPF_JSET, BPF_JNE, 
BPF_JSGT, BPF_JSGE, BPF_JLT, BPF_JLE, BPF_JSLT, 
and BPF_JSLE 

● Unconditional jump instructions (BPF_JA, 
BPF_CALL, BPF_EXIT) provide no memory-ordering 
semantics
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BPF Conditional Jump Instructions

● These modifiers to BPF_JMP32 and BPF_JMP 
instructions provide weak ordering:
– BPF_JEQ, BPF_JGT, BPF_JGE, BPF_JSET, 
BPF_JNE, BPF_JSGT, BPF_JSGE, BPF_JLT, 
BPF_JLE, BPF_JSLT, and BPF_JSLE 

● Too-smart JITs might need to be careful
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BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD 

or BPF_LDX), and 
– There is a store instruction (BPF_ST or BPF_STX) before control flow 

converges, and
– The restrictions outlined in the “CONTROL DEPENDENCIES” section of 
Documentation/memory-barriers.txt are faithfully followed

● Compilers do not understand control dependencies, and happily break them.
● Optimizations involving conditional-move instructions requires the “before control 

flow converges” restriction
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BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD 

or BPF_LDX), and 
– There is a store instruction (BPF_ST or BPF_STX) before control flow 

converges, and following the conditional jump instruction in program order
– The restrictions outlined in the “CONTROL DEPENDENCIES” section of 
Documentation/memory-barriers.txt are faithfully followed

● Compilers do not understand control dependencies, and happily break them.
● Optimizations involving conditional-move instructions requires the “before 

control flow converges” restriction
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BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD 

or BPF_LDX), and 
– There is a store instruction (BPF_ST or BPF_STX) before control flow 

converges, and following the conditional jump instruction in program order
– The restrictions outlined in the “CONTROL DEPENDENCIES” section of 
Documentation/memory-barriers.txt are faithfully followed

● Compilers do not understand control dependencies, and happily break them.
● Optimizations involving conditional-move instructions requires the “before 

control flow converges” restriction

Running BPF assembly through an 

optimizing compiler requires some care
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Sometimes Translation is Required
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Sometimes Translation is Required

● Paul E. McKenney’s original:
– “Running BPF assembly through an optimizing 

compiler requires some care”
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Sometimes Translation is Required

● Paul E. McKenney’s original:
– “Running BPF assembly through an optimizing 

compiler requires some care”
● Alexei Starovoitov’s translation:

– “Don’t run BPF assembly through an optimizing 
compiler”



20

BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD 

or BPF_LDX), and 
– There is a store instruction (BPF_ST or BPF_STX) before control flow 

converges, and following the conditional jump instruction in program order
– The restrictions outlined in the “CONTROL DEPENDENCIES” section of 
Documentation/memory-barriers.txt are faithfully followed

● Compilers do not understand control dependencies, and happily break them.
● Optimizations involving conditional-move instructions requires the “before 

control flow converges” restriction

Running BPF assembly through an 

optimizing compiler requires some careLKMM control dependencies need

some “goto” love...
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Towards a Formal BPF Model
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Goals of Formal BPF Memory Model

● Simple hardware-level model
● Consistent with LKMM

– Prefer to avoid forbidding reorderings LKMM allows
● Low-overhead mappings to supported hardware

– BPF should avoid forbidding reorderings allowed by ARMv8, 
PowerPC, RISC-V, x86, …

● Ability to grow as BPF instruction set grows
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But Already Have Formal LKMM!!!

● Defines BPF limits of weakness
● Additional functionality can be excluded

– Restrict the linux-kernel.def file (next slide)
● Just map from BPF assembly to LKMM C

– Simple script!!!
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Restrict linux-kernel.defs file
● Make a linux-bpf.defs file for use with the existing linux-kernel.{bell,cat} files:
xchg(X,V)  __xchg{mb}(X,V)
cmpxchg(X,V,W) __cmpxchg{mb}(X,V,W)
spin_lock(X) { __lock(X); }
spin_unlock(X) { __unlock(X); }
spin_trylock(X) __trylock(X)
spin_is_locked(X) __islocked(X)
atomic_add(V,X) { __atomic_op(X,+,V); }
atomic_and(V,X) { __atomic_op(X,&,V); }
atomic_or(V,X)  { __atomic_op(X,|,V); }
atomic_xor(V,X) { __atomic_op(X,^,V); }
atomic_fetch_add(V,X) __atomic_fetch_op{mb}(X,+,V)
atomic_fetch_and(V,X) __atomic_fetch_op{mb}(X,&,V)
atomic_fetch_or(V,X) __atomic_fetch_op{mb}(X,|,V)
atomic_fetch_xor(V,X) __atomic_fetch_op{mb}(X,^,V)
atomic_xchg(X,V) __xchg{mb}(X,V)
atomic_cmpxchg(X,V,W) __cmpxchg{mb}(X,V,W)
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Restrict linux-kernel.defs File
● Make a linux-bpf.defs file for use with the existing linux-kernel.{bell,cat} files:
xchg(X,V)  __xchg{mb}(X,V)
cmpxchg(X,V,W) __cmpxchg{mb}(X,V,W)
spin_lock(X) { __lock(X); }
spin_unlock(X) { __unlock(X); }
spin_trylock(X) __trylock(X)
spin_is_locked(X) __islocked(X)
atomic_add(V,X) { __atomic_op(X,+,V); }
atomic_and(V,X) { __atomic_op(X,&,V); }
atomic_or(V,X)  { __atomic_op(X,|,V); }
atomic_xor(V,X) { __atomic_op(X,^,V); }
atomic_fetch_add(V,X) __atomic_fetch_op{mb}(X,+,V)
atomic_fetch_and(V,X) __atomic_fetch_op{mb}(X,&,V)
atomic_fetch_or(V,X) __atomic_fetch_op{mb}(X,|,V)
atomic_fetch_xor(V,X) __atomic_fetch_op{mb}(X,^,V)
atomic_xchg(X,V) __xchg{mb}(X,V)
atomic_cmpxchg(X,V,W) __cmpxchg{mb}(X,V,W)Just deleted a bunch of lin

es!!!



26

Restrict linux-kernel.defs File
● Make a linux-bpf.defs file for use with the existing linux-kernel.{bell,cat} files:
xchg(X,V)  __xchg{mb}(X,V)
cmpxchg(X,V,W) __cmpxchg{mb}(X,V,W)
spin_lock(X) { __lock(X); }
spin_unlock(X) { __unlock(X); }
spin_trylock(X) __trylock(X)
spin_is_locked(X) __islocked(X)
atomic_add(V,X) { __atomic_op(X,+,V); }
atomic_and(V,X) { __atomic_op(X,&,V); }
atomic_or(V,X)  { __atomic_op(X,|,V); }
atomic_xor(V,X) { __atomic_op(X,^,V); }
atomic_fetch_add(V,X) __atomic_fetch_op{mb}(X,+,V)
atomic_fetch_and(V,X) __atomic_fetch_op{mb}(X,&,V)
atomic_fetch_or(V,X) __atomic_fetch_op{mb}(X,|,V)
atomic_fetch_xor(V,X) __atomic_fetch_op{mb}(X,^,V)
atomic_xchg(X,V) __xchg{mb}(X,V)
atomic_cmpxchg(X,V,W) __cmpxchg{mb}(X,V,W)Just deleted a bunch of lin

es!!!If only it were that easy...



27

Map From BPF to LKMM C Code

● The herd7 event structures are different for C 
code and assembly code (of any type)

● Assembly has constraints
– For example, R0 is special for BPF_CMPXCHG

● Pitfalls converting branches into “if”/”while”
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Need hardware memory model
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● Pitfalls converting branches into “if”/”while”
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Map From BPF to LKMM C Code

● The herd7 event structures are different for C 
code and assembly code (of any type)

● Assembly has constraints
– For example, R0 is special for BPF_CMPXCHG

● Pitfalls converting branches into “if”/”while”

Need hardware memory modelBut LKMM useful debugging aid

Or vice versa!
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Just Use Hardware Memory Model!
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Just Use Hardware Memory Model!

● X86 is too strong
– We don’t want BPF JITs to emit memory-barrier 

instructions after every conditional branch on ARMv8 and 
PowerPC

● PowerPC is not actively developed
– Also larx/stcx instead of atomic instructions

● ARMv8?
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ARMv8 Memory Model
● Actively developed and maintained
● Well designed (once you understand it!)
● Fully featured (e.g., mixed sizes)

– Including load-acquire/store-release
● Includes irrelevant hardware features
● Stronger than PowerPC and 32-bit ARM
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ARMv8 Memory Model
● Actively developed and maintained
● Well designed (once you understand it!)
● Fully featured (e.g., mixed sizes)

– Including load-acquire/store-release
● Includes irrelevant hardware features
● Stronger than PowerPC and 32-bit ARM

Worth looking into
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The ARMv8 Memory Model
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How to Weaken ARMv8 As Needed?

● Review ARM's AArch64 Application Level 
Memory Model (ARM DDI 0487J.a ID042523), 
section B2.3 (31 pages)
– Remove anything PowerPC cannot order
– Remove other-multicopy atomicity
– Other issues hidden by lack of BPF weak barriers
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How to Weaken ARMv8 As Needed?

● Review ARM's AArch64 Application Level 
Memory Model (ARM DDI 0487J.a ID042523), 
section B2.3 (31 pages)
– Remove anything PowerPC cannot order
– Remove other-multicopy atomicity
– Other issues hidden by lack of BPF weak barriersThe following slides review a couple 

of the more entertaining examples
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Example 1: Dependency Ordered 
Before?
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Dependency Ordered Before?

Disturbing example from ARMv8:
● Dependency-ordered-before: A dependency creates externally-visible order 

between a Read Memory effect and another Memory effect generated by the 
same Observer. A Read Memory effect R1 is Dependency-ordered-before a 
Read or Write Memory effect RW2 from the same Observer if R1 appears in 
program order before RW2 and any of the following cases apply: 
– ...
– RW2 is a Write Memory effect W2 that appears in program order after an Explicit Read 

or Write Memory effect RW3 and there is an Address dependency from R1 to RW3.
– ...
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Dependency Ordered Before?

Read R1
Read or Write

RW3
Write W2

Program
order

R1 determines
address of RW3

Program
order

ARMv8 nevertheless orders R1 before W2!!!

W2 unrelated to
both R1 and RW3
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Dependency Ordered Before?

● Example Linux-kernel code fragment:
    r1 = rcu_dereference(gp);

    // r1 is a pointer to an array

    WRITE_ONCE(r1[i].value, 42);

    WRITE_ONCE(x, “This is a test”);

    // Write to x ordered after read from gp??? 
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Dependency Ordered Before?

● Example Linux-kernel code fragment:
    r1 = rcu_dereference(gp);

    // r1 is a pointer to an array

    WRITE_ONCE(r1[i].value, 42);

    WRITE_ONCE(x, “This is a test”);

    // Write to x ordered after read from gp??? 
A question for a memory model!!!
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Check Dependency Ordered Before

Read R1
Read or Write

RW3
Write W2

Program
order

Program
order
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Check Dependency Ordered Before

Read R1
Read or Write

RW3
Write W2

Program
order

Program
order

Read R2 Full Barrier Write W1
Program

order
Program

order
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PPC Dependency Ordered Before?
PPC ARMv8DOB5-PPC
{
0:r2=x; 0:r4=y; 0:r6=z;
1:r2=x; 1:r4=y; 1:r6=z;
}
 P0           | P1           ;
 li r1,1      | li r1,1      ;
 lwz r3,0(r2) | lwz r3,0(r6) ;
 xor r5,r3,r3 | sync         ;
 add r4,r5,r4 | stw r1,0(r2) ;
 stw r1,0(r4) |              ;
 stw r1,0(r6) |              ;
locations [x;y;z]
exists (0:r3=1 /\ 1:r3=1)
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PPC Dependency Ordered Before?
$ herd7 ARMv8DOB5-PPC.litmus
Test ARMv8DOB5-PPC Allowed
States 3
0:r3=0; 1:r3=0; [x]=1; [y]=1; [z]=1;
0:r3=0; 1:r3=1; [x]=1; [y]=1; [z]=1;
0:r3=1; 1:r3=0; [x]=1; [y]=1; [z]=1;
No
Witnesses
Positive: 0 Negative: 3
Condition exists (0:r3=1 /\ 1:r3=1)
Observation ARMv8DOB5-PPC Never 0 3
Time ARMv8DOB5-PPC 0.01
Hash=94585bab1e0261eb46eac418ba00b2f5
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PPC Dependency Ordered Before?
$ herd7 ARMv8DOB5-PPC.litmus
Test ARMv8DOB5-PPC Allowed
States 3
0:r3=0; 1:r3=0; [x]=1; [y]=1; [z]=1;
0:r3=0; 1:r3=1; [x]=1; [y]=1; [z]=1;
0:r3=1; 1:r3=0; [x]=1; [y]=1; [z]=1;
No
Witnesses
Positive: 0 Negative: 3
Condition exists (0:r3=1 /\ 1:r3=1)
Observation ARMv8DOB5-PPC Never 0 3
Time ARMv8DOB5-PPC 0.01
Hash=94585bab1e0261eb46eac418ba00b2f5

PowerPC orders this!!!



48

LKMM Dependency Ordered Before?

C ARMv8DOB5-LKMM

{       
  x=y;
}

P0(int *u, int *x, int *y, int *z)
{
  int r1 = READ_ONCE(*x);
  WRITE_ONCE(*r1, 1);
  WRITE_ONCE(*z, 1);
}

P1(int *u, int *x, int *y, int *z)
{  
        int r1 = READ_ONCE(*z);
        smp_mb();
        WRITE_ONCE(*x, u);
}

locations [x;y;z]   
exists (0:r1=u /\ 1:r1=1)
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LKMM Dependency Ordered Before?
$ herd7 -conf linux-kernel.cfg ARMv8DOB5-LKMM.litmus
Test ARMv8DOB5-LKMM Allowed
States 4
0:r1=u; 1:r1=0; [x]=u; [y]=0; [z]=1;
0:r1=u; 1:r1=1; [x]=u; [y]=0; [z]=1;
0:r1=y; 1:r1=0; [x]=u; [y]=1; [z]=1;
0:r1=y; 1:r1=1; [x]=u; [y]=1; [z]=1;
Ok
Witnesses
Positive: 1 Negative: 3
Condition exists (0:r1=u /\ 1:r1=1)
Observation ARMv8DOB5-LKMM Sometimes 1 3
Time ARMv8DOB5-LKMM 0.01
Hash=0bb0204225e06470ad922579dd92f14c
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LKMM Dependency Ordered Before?
$ herd7 -conf linux-kernel.cfg ARMv8DOB5-LKMM.litmus
Test ARMv8DOB5-LKMM Allowed
States 4
0:r1=u; 1:r1=0; [x]=u; [y]=0; [z]=1;
0:r1=u; 1:r1=1; [x]=u; [y]=0; [z]=1;
0:r1=y; 1:r1=0; [x]=u; [y]=1; [z]=1;
0:r1=y; 1:r1=1; [x]=u; [y]=1; [z]=1;
Ok
Witnesses
Positive: 1 Negative: 3
Condition exists (0:r1=u /\ 1:r1=1)
Observation ARMv8DOB5-LKMM Sometimes 1 3
Time ARMv8DOB5-LKMM 0.01
Hash=0bb0204225e06470ad922579dd92f14cLKMM does not order th

is!!!
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LKMM Dependency Ordered Before?
$ herd7 -conf linux-kernel.cfg ARMv8DOB5-LKMM.litmus
Test ARMv8DOB5-LKMM Allowed
States 4
0:r1=u; 1:r1=0; [x]=u; [y]=0; [z]=1;
0:r1=u; 1:r1=1; [x]=u; [y]=0; [z]=1;
0:r1=y; 1:r1=0; [x]=u; [y]=1; [z]=1;
0:r1=y; 1:r1=1; [x]=u; [y]=1; [z]=1;
Ok
Witnesses
Positive: 1 Negative: 3
Condition exists (0:r1=u /\ 1:r1=1)
Observation ARMv8DOB5-LKMM Sometimes 1 3
Time ARMv8DOB5-LKMM 0.01
Hash=0bb0204225e06470ad922579dd92f14cLKMM does not order th

is!!!What should BPF do???
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LKMM Dependency Ordered Before?

C ARMv8DOB5-LKMM

{       
  x=y;
}

P0(int *u, int *x, int *y, int *z)
{
  int r1 = READ_ONCE(*x);
  WRITE_ONCE(*r1, 1);
  WRITE_ONCE(*z, 1);
}

P1(int *u, int *x, int *y, int *z)
{  
        int r1 = READ_ONCE(*z);
        smp_mb();
        WRITE_ONCE(*x, u);
}

locations [x;y;z]   
exists (0:r1=u /\ 1:r1=1)
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BPF Dependency Ordered Before?
● Why do ARMv8 and PowerPC order stores?
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BPF Dependency Ordered Before?
● Why do ARMv8 and PowerPC order stores?

– They order accesses to a single location
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BPF Dependency Ordered Before?
● Why do ARMv8 and PowerPC order stores?

– They order accesses to a single location
– And before that load completes, the hardware has 

no idea whether the two stores are to the same 
location!!!



56

BPF Dependency Ordered Before?
● Why do ARMv8 and PowerPC order stores?

– They order accesses to a single location
– And before that load completes, the hardware has 

no idea whether the two stores are to the same 
location!!!

● Why doesn’t LKMM order these stores???



57

BPF Dependency Ordered Before?
● Why do ARMv8 and PowerPC order stores?

– They order accesses to a single location
– And before that load completes, the hardware has 

no idea whether the two stores are to the same 
location!!!

● Why doesn’t LKMM order these stores???
– LKMM knows the full execution a priori
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BPF Dependency Ordered Before?
● Why do ARMv8 and PowerPC order stores?

– They order accesses to a single location
– And before that load completes, the hardware has 

no idea whether the two stores are to the same 
location!!!

● Why doesn’t LKMM order these stores???
– LKMM knows the full execution a prioriBPF has no a priori k

nowledge,

& thus should follow PPC & ARM
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Example 2: Hazard Ordered Before?
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Hazard Ordered Before?

Another disturbing example from ARMv8:
● Hazard-ordered-before: An Effect E1 is Hazard-ordered-before an 

effect E2 if all of the following apply:
– E1 is an Explicit Read Memory effect R1.
– R1 appears in program-order before an Explicit Read Memory effect R3

– R1 and R3 access the same Location.
– R1 and E2 are from different Observers.
– R3 is Coherence-before E2.
– E2 is an Explicit Write Memory effect W2.
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Check Hazard Ordered Before???

Read R1 Reread R3
Program

order

Write W2

Coherence
Order

Coherence Order???
(just one variable)
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Hazard Ordered Before?

● Example Linux-kernel code fragment:
– Thread 0:

    r1 = READ_ONCE(x); // This cannot return 1!!!

    r2 = READ_ONCE(x); // Returns 0

– Thread 1:
    WRITE_ONCE(x, 1);
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Check Hazard Ordered Before???

Read x R1 Read x R3
Program

Order

Write x R2

co? co?
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Check Hazard Ordered Before???

Read x R1 Read x R3
Program

Order

Write x R2

co? co?

Clearly need something before

reads and after write, but what?
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Use Light-Weight Reads-From Link?

Program
Order Read x R1 Read x R3

Read y R4

(Acquire)
Program

Order

Write x R2
Write y R4

(1, Release)
Program

Order

co?co? co?
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Use Light-Weight Reads-From Link?

Program
Order Read x R1 Read x R3

Read y R4

(Acquire)
Program

Order

Write x R2
Write y R4

(1, Release)
Program

Order

co?co? co?

Test code fully synchronizes,

obscuring ordering
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Use Light-Weight Reads-From Link?

Program
Order Read x R1 Read x R3

Read y R4

(Acquire)
Program

Order

Write x R2
Write y R4

(1, Release)
Program

Order

co?co? co?

Test code fully synchronizes,

obscuring ordering

Need a little help from a 

litmus test named “R”...
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Check Hazard Ordered Before???

po  po  po  Read x R1 Read x R3smp_mb()Write y R4

(2)

po  Write x R2
Write y R4
(1,Release)

co?co? co?
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PPC Hazard Ordered Before?
PPC ARMv8HOB-PPC
{
0:r2=x; 0:r4=y;
1:r2=x; 1:r4=y;
}
 P0           | P1           ;
 li r1, 2     | li r1,1      ;
 stw r1,0(r2) | stw r1,0(r4) ;
 sync         | lwsync       ;
 lwz r3,0(r4) | stw r1,0(r2) ;
 lwz r5,0(r4) |              ;
locations [x;y]
exists (0:r3=0 /\ 0:r5=0 /\ x=2)
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PPC Hazard Ordered Before?
$ herd7 ARMv8HOB-PPC.litmus
Test ARMv8HOB-PPC Allowed
States 6
0:r3=0; 0:r5=0; [x]=1; [y]=1;
0:r3=0; 0:r5=0; [x]=2; [y]=1;
0:r3=0; 0:r5=1; [x]=1; [y]=1;
0:r3=0; 0:r5=1; [x]=2; [y]=1;
0:r3=1; 0:r5=1; [x]=1; [y]=1;
0:r3=1; 0:r5=1; [x]=2; [y]=1;
Ok
Witnesses
Positive: 1 Negative: 5
Condition exists (0:r3=0 /\ 0:r5=0 /\ [x]=2)
Observation ARMv8HOB-PPC Sometimes 1 5
Time ARMv8HOB-PPC 0.01
Hash=a159a4cc43d21ddd63a9a1e230d266d1
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PPC Hazard Ordered Before?
$ herd7 ARMv8HOB-PPC.litmus
Test ARMv8HOB-PPC Allowed
States 6
0:r3=0; 0:r5=0; [x]=1; [y]=1;
0:r3=0; 0:r5=0; [x]=2; [y]=1;
0:r3=0; 0:r5=1; [x]=1; [y]=1;
0:r3=0; 0:r5=1; [x]=2; [y]=1;
0:r3=1; 0:r5=1; [x]=1; [y]=1;
0:r3=1; 0:r5=1; [x]=2; [y]=1;
Ok
Witnesses
Positive: 1 Negative: 5
Condition exists (0:r3=0 /\ 0:r5=0 /\ [x]=2)
Observation ARMv8HOB-PPC Sometimes 1 5
Time ARMv8HOB-PPC 0.01
Hash=a159a4cc43d21ddd63a9a1e230d266d1PowerPC can make this happen!!!
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How Does PPC Make This Happen?

● Stores are atemporal with weak barriers
– Different PPC CPUs see stores in different orders
– ARMv8 CPUs not doing stores agree on order

● “Other-multicopy atomicity”, which ARMv8 does and PPC 
does not do

● Section 15.3.8 (“A Counter-Intuitive Case Study”) 
of perfbook* gives step-by-step analysis

* https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
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How Does PPC Make This Happen?

● Stores are atemporal with weak barriers
– Different PPC CPUs see stores in different orders
– ARMv8 CPUs not doing stores agree on order

● “Other-multicopy atomicity”, which ARMv8 does and PPC 
does not do

● Section 15.3.8 (“A Counter-Intuitive Case Study”) 
of perfbook* gives step-by-step analysis

* https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

But can ARMv8 make this happen?
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ARMv8 Hazard Ordered Before?
AArch64 ARMv8HOB-AArch64
{
0:X2=x; 0:X4=y;
1:X2=x; 1:X4=y;
}
 P0           | P1           ;
 MOV X1,#1    | MOV X1,#1    ;
 STR X1,[X2]  | STR X1,[X4]  ;
 DMB SY       | STLR X1,[X2] ;
 LDR X3,[X4]  |              ;
 LDR X5,[X4]  |              ;
locations [x;y]
exists (0:X3=0 /\ 0:X5=0 /\ x=2)
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ARMv8 Hazard Ordered Before?
$ herd7 ARMv8HOB-AArch64.litmus 
Test ARMv8HOB-AArch64 Allowed
States 3
0:X3=0; 0:X5=0; [x]=1; [y]=1;
0:X3=0; 0:X5=1; [x]=1; [y]=1;
0:X3=1; 0:X5=1; [x]=1; [y]=1;
No
Witnesses
Positive: 0 Negative: 4
Condition exists (0:X3=0 /\ 0:X5=0 /\ [x]=2)
Observation ARMv8HOB-AArch64 Never 0 4
Time ARMv8HOB-AArch64 0.02
Hash=58ec9f95130e00e226284e19adc7af48
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ARMv8 Hazard Ordered Before?
$ herd7 ARMv8HOB-AArch64.litmus 
Test ARMv8HOB-AArch64 Allowed
States 3
0:X3=0; 0:X5=0; [x]=1; [y]=1;
0:X3=0; 0:X5=1; [x]=1; [y]=1;
0:X3=1; 0:X5=1; [x]=1; [y]=1;
No
Witnesses
Positive: 0 Negative: 4
Condition exists (0:X3=0 /\ 0:X5=0 /\ [x]=2)
Observation ARMv8HOB-AArch64 Never 0 4
Time ARMv8HOB-AArch64 0.02
Hash=58ec9f95130e00e226284e19adc7af48

ARM really does not do this!

(Nor “R”)
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How Does PPC Make This Happen?

● Stores are atemporal with weak barriers
– Different PPC CPUs see stores in different orders
– ARMv8 CPUs not doing stores agree on order

● “Other-multicopy atomicity”, which ARMv8 does and PPC 
does not do

● Section 15.3.8 (“A Counter-Intuitive Case Study”) 
of perfbook* gives step-by-step analysis

* https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

BPF does not do weak barrie
rs

Not yet, a
nyway...
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ARMv8 Lessons Learned
● Avoiding conditional-move instruction does not simplify things much

– The cmpxchg instructions act similarly
● Avoiding other-multicopy atomicity simplifies things, but in complex ways

– The devil is in the details, and I bet some devils still live
● Great complexity arises from some ARMv8 features:

– MMU support (and faults), self-modifying code, cache-management instructions, 
MMIO accesses, shareability domains, limited-ordering regions, and vector 
instructions

● Weak barriers and weakly ordered instructions contribute some complexity
● Converging control flow a no-go for assembly languages (and gotos)
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Why No BPF Assembly Language???
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Your BPF Assembly Language!!!
BPF S+fence+data

{
int x=0; int y=10; 
0:r0=x; 0:r1=y;
0:r5=tmp; (* only used for the atomic op in P0 to enforce ordering *)
1:r0=x; 1:r1=y;
}

P0                                         | P1                         ;
*(u32 *)(r0 + 0) = 2                       | r2 = *(u32 *)(r1 + 0)      ;
r6 = atomic_fetch_add((u64*)(r5 + 0), r6)  | *(u32 *)(r0 + 0) = r2      ;
*(u32 *)(r1 + 0) = 0                       |                            ;

exists (1:r2=0 /\ x=2)



81

And Your herd7 Output!!!

$ herd7 -model bpf_lkmm.cat S+fence+data.litmus
Test S+fence+data Allowed
States 3
1:r2=0; [x]=0;
1:r2=10; [x]=2;
1:r2=10; [x]=10;
No
Witnesses
Positive: 0 Negative: 3
Condition exists (1:r2=0 /\ [x]=2)
Observation S+fence+data Never 0 3
Time S+fence+data 0.00
Hash=a35dc5b17cde70582ebd0ea218dd3ba5
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And Your herd7 Output!!!

$ herd7 -model bpf_lkmm.cat S+fence+data.litmus
Test S+fence+data Allowed
States 3
1:r2=0; [x]=0;
1:r2=10; [x]=2;
1:r2=10; [x]=10;
No
Witnesses
Positive: 0 Negative: 3
Condition exists (1:r2=0 /\ [x]=2)
Observation S+fence+data Never 0 3
Time S+fence+data 0.00
Hash=a35dc5b17cde70582ebd0ea218dd3ba5

Partial support fo
r both syntax 

and LKMM-based memory model,

courtesy of Puranjay

https://github.com/puranjaymohan/herdtools7.git  herd/libdir/bpf_lkmm.cat
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What is Next?
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Goals of Formal BPF Memory Model

● Simple hardware-level model
● Consistent with LKMM

– Prefer to avoid forbidding reorderings LKMM allows
● Low-overhead mappings to supported hardware

– BPF should avoid forbidding reorderings allowed by ARMv8, 
PowerPC, RISC-V, x86, …

● Ability to grow as BPF instruction set grows
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BPF Memory Model To-Do List

● Ordering for BPF branch instructions into herd7
● Hardware, Clang or GCC BPF mnemonics? (Poll!!!)
● Puranjay Mohan and Hernan Luis de Soto to ensure litmus-test 

compatibility
– Puranjay working on herd7, Hernan on dartagnan

● Lots of memory-model validation
● Determine exact form of standard text

– Base on LKMM, ARMv8, or something else?
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BPF Memory Model Validation

● Check tools/memory-model/litmus-tests
– In progress

● Check test6.pdf litmus tests [1]
● Check appropriate tests from github litmus [2]
● Verify BPF JIT ordering (in progress)

[1] https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test6.pdf 
[2] https://github.com/paulmckrcu/litmus
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Demo
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Summary
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Summary: BPF Memory Model

● Good progress, but much work remains
● Initial wording for standard text, subject to change
● Good frameworks for added BPF instructions, 

when and if
● We have a prototype of a BPF full-state-space-

search formal-verification tool!!!
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For More Information

● Linux-kernel BPF standards directory (includes instruction definitions)
– Documentation/bpf/standardization

● The Herd toolsuite for memory-model verification and testing
– https://github.com/herd/herdtools7  
– https://github.com/puranjaymohan/herdtools7.git with BPF prototype

● “Is Parallel Programming Hard, And, If So, What Can You Do About It?”
– Chapter 12 (“Formal Verification”)

● https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html 
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Questions?
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