

Instruction-level BPF memory model

© 2024 Meta Platforms

Paul E. McKenney, Meta Platforms Kernel Team

LSF/MM/BPF, May 13, 2024

Instruction-level BPF memory model

© 2024 Meta Platforms

Paul E. McKenney, Meta Platforms Kernel Team

Puranjay Mohan, Kernel Developer

LSF/MM/BPF, May 13, 2024

3

History

● “Towards a BPF Memory Model”, LPC 2021
– https://lpc.events/event/11/contributions/941/

● Kangrejos 2023 Hallway Track (with Jose Marchesi)
● “Instruction-Level BPF Memory Model”, IETF 118

– https://datatracker.ietf.org/doc/agenda-118-bpf/
– https://datatracker.ietf.org/meeting/118/materials/slides-118-bpf-bpf-memory-model-00

● “BPF Memory Model, Two Years On”, LPC 2023
– https://lpc.events/event/17/contributions/1580/

● “Instruction-Level BPF Memory Model”, living Google Document
– https://docs.google.com/document/d/1TaSEfWfLnRUi5KqkavUQyL2tThJXYWHS15qcbxIsFb0/edit?

usp=sharing

4

History

● “Towards a BPF Memory Model”, LPC 2021
– https://lpc.events/event/11/contributions/941/

● Kangrejos 2023 Hallway Track (with Jose Marchesi)
● “Instruction-Level BPF Memory Model”, IETF 118

– https://datatracker.ietf.org/doc/agenda-118-bpf/
– https://datatracker.ietf.org/meeting/118/materials/slides-118-bpf-bpf-memory-model-00

● “BPF Memory Model, Two Years On”, LPC 2023
– https://lpc.events/event/17/contributions/1580/

● “Instruction-Level BPF Memory Model”, living Google Document
– https://docs.google.com/document/d/1TaSEfWfLnRUi5KqkavUQyL2tThJXYWHS15qcbxIsFb0/edit?

usp=sharing What m
ore could possibly be

needed???

5

Where Is the BPF Memory Model?

● Overall direction set in 2021
● Informal instruction-level ordering in late 2023
● We still need:

– Formal definition and tools
● Including comparison against hardware models

– An official IETF standard for BPF memory model

6

Review of Informal Model

7

Review of Informal Model

● BPF Atomic Instructions
● BPF Conditional Jump Instructions
● BPF Load instructions
● BPF Memory-Reference Instructions

8

BPF Atomic Instructions

● BPF_XCHG, BPF_CMPXCHG
● BPF_ADD, BPF_OR, BPF_AND, BPF_XOR
● BPF_FETCH with one of the above

9

BPF Atomic Instructions 1/3

● BPF_XCHG and BPF_CMPXCHG instructions are fully ordered
● All CPUs and tasks agree that all instructions preceding or following

a given BPF_XCHG or BPF_CMPXCHG instruction are ordered before
or after, respectively, that same instruction
– Consistent with Linux-kernel atomic_xchg() and
atomic_cmpxchg(), respectively

– Alternatively, consistent with the following:
● smp_mb(); atomic_cmpxchg_relaxed(); smp_mb();

10

BPF Atomic Instructions 2/3

● BPF_ADD, BPF_OR, BPF_AND, BPF_XOR
instructions are unordered

● CPUs and JITs can reorder these instructions freely
– Consistent with Linux-kernel
atomic_add(), atomic_or(),
atomic_and(), and atomic_xor() APIs

11

BPF Atomic Instructions 3/3

● When accompanied by BPF_FETCH, BPF_ADD, BPF_OR,
BPF_AND, BPF_XOR instructions are fully ordered

● All CPUs and tasks agree that all instructions preceding or
following a given instruction adorned with BPF_FETCH are
ordered before or after, respectively, that same instruction
– Consistent with Linux-kernel atomic_fetch_add(),
atomic_fetch_or(), atomic_fetch_and(), and
atomic_fetch_xor() APIs

12

BPF Conditional Jump Instructions

● Modifiers to BPF_JMP32 and BPF_JMP instructions:
– BPF_JEQ, BPF_JGT, BPF_JGE, BPF_JSET, BPF_JNE,
BPF_JSGT, BPF_JSGE, BPF_JLT, BPF_JLE, BPF_JSLT,
and BPF_JSLE

● Unconditional jump instructions (BPF_JA,
BPF_CALL, BPF_EXIT) provide no memory-ordering
semantics

13

BPF Conditional Jump Instructions

● These modifiers to BPF_JMP32 and BPF_JMP
instructions provide weak ordering:
– BPF_JEQ, BPF_JGT, BPF_JGE, BPF_JSET,
BPF_JNE, BPF_JSGT, BPF_JSGE, BPF_JLT,
BPF_JLE, BPF_JSLT, and BPF_JSLE

● Too-smart JITs might need to be careful

14

BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD

or BPF_LDX), and
– There is a store instruction (BPF_ST or BPF_STX) before control flow

converges, and
– The restrictions outlined in the “CONTROL DEPENDENCIES” section of
Documentation/memory-barriers.txt are faithfully followed

● Compilers do not understand control dependencies, and happily break them.
● Optimizations involving conditional-move instructions requires the “before control

flow converges” restriction

15

BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD

or BPF_LDX), and
– There is a store instruction (BPF_ST or BPF_STX) before control flow

converges, and following the conditional jump instruction in program order
– The restrictions outlined in the “CONTROL DEPENDENCIES” section of
Documentation/memory-barriers.txt are faithfully followed

● Compilers do not understand control dependencies, and happily break them.
● Optimizations involving conditional-move instructions requires the “before

control flow converges” restriction

16

BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD

or BPF_LDX), and
– There is a store instruction (BPF_ST or BPF_STX) before control flow

converges, and following the conditional jump instruction in program order
– The restrictions outlined in the “CONTROL DEPENDENCIES” section of
Documentation/memory-barriers.txt are faithfully followed

● Compilers do not understand control dependencies, and happily break them.
● Optimizations involving conditional-move instructions requires the “before

control flow converges” restriction

Running BPF assembly through an

optimizing compiler requires some care

17

Sometimes Translation is Required

18

Sometimes Translation is Required

● Paul E. McKenney’s original:
– “Running BPF assembly through an optimizing

compiler requires some care”

19

Sometimes Translation is Required

● Paul E. McKenney’s original:
– “Running BPF assembly through an optimizing

compiler requires some care”
● Alexei Starovoitov’s translation:

– “Don’t run BPF assembly through an optimizing
compiler”

20

BPF Conditional Jump Instructions

● This weak ordering applies when:
– Either the src or dst registers depend on a prior load instruction (BPF_LD

or BPF_LDX), and
– There is a store instruction (BPF_ST or BPF_STX) before control flow

converges, and following the conditional jump instruction in program order
– The restrictions outlined in the “CONTROL DEPENDENCIES” section of
Documentation/memory-barriers.txt are faithfully followed

● Compilers do not understand control dependencies, and happily break them.
● Optimizations involving conditional-move instructions requires the “before

control flow converges” restriction

Running BPF assembly through an

optimizing compiler requires some careLKMM control dependencies need

some “goto” love...

21

Towards a Formal BPF Model

22

Goals of Formal BPF Memory Model

● Simple hardware-level model
● Consistent with LKMM

– Prefer to avoid forbidding reorderings LKMM allows
● Low-overhead mappings to supported hardware

– BPF should avoid forbidding reorderings allowed by ARMv8,
PowerPC, RISC-V, x86, …

● Ability to grow as BPF instruction set grows

23

But Already Have Formal LKMM!!!

● Defines BPF limits of weakness
● Additional functionality can be excluded

– Restrict the linux-kernel.def file (next slide)
● Just map from BPF assembly to LKMM C

– Simple script!!!

24

Restrict linux-kernel.defs file
● Make a linux-bpf.defs file for use with the existing linux-kernel.{bell,cat} files:
xchg(X,V) __xchg{mb}(X,V)
cmpxchg(X,V,W) __cmpxchg{mb}(X,V,W)
spin_lock(X) { __lock(X); }
spin_unlock(X) { __unlock(X); }
spin_trylock(X) __trylock(X)
spin_is_locked(X) __islocked(X)
atomic_add(V,X) { __atomic_op(X,+,V); }
atomic_and(V,X) { __atomic_op(X,&,V); }
atomic_or(V,X) { __atomic_op(X,|,V); }
atomic_xor(V,X) { __atomic_op(X,^,V); }
atomic_fetch_add(V,X) __atomic_fetch_op{mb}(X,+,V)
atomic_fetch_and(V,X) __atomic_fetch_op{mb}(X,&,V)
atomic_fetch_or(V,X) __atomic_fetch_op{mb}(X,|,V)
atomic_fetch_xor(V,X) __atomic_fetch_op{mb}(X,^,V)
atomic_xchg(X,V) __xchg{mb}(X,V)
atomic_cmpxchg(X,V,W) __cmpxchg{mb}(X,V,W)

25

Restrict linux-kernel.defs File
● Make a linux-bpf.defs file for use with the existing linux-kernel.{bell,cat} files:
xchg(X,V) __xchg{mb}(X,V)
cmpxchg(X,V,W) __cmpxchg{mb}(X,V,W)
spin_lock(X) { __lock(X); }
spin_unlock(X) { __unlock(X); }
spin_trylock(X) __trylock(X)
spin_is_locked(X) __islocked(X)
atomic_add(V,X) { __atomic_op(X,+,V); }
atomic_and(V,X) { __atomic_op(X,&,V); }
atomic_or(V,X) { __atomic_op(X,|,V); }
atomic_xor(V,X) { __atomic_op(X,^,V); }
atomic_fetch_add(V,X) __atomic_fetch_op{mb}(X,+,V)
atomic_fetch_and(V,X) __atomic_fetch_op{mb}(X,&,V)
atomic_fetch_or(V,X) __atomic_fetch_op{mb}(X,|,V)
atomic_fetch_xor(V,X) __atomic_fetch_op{mb}(X,^,V)
atomic_xchg(X,V) __xchg{mb}(X,V)
atomic_cmpxchg(X,V,W) __cmpxchg{mb}(X,V,W)Just deleted a bunch of lin

es!!!

26

Restrict linux-kernel.defs File
● Make a linux-bpf.defs file for use with the existing linux-kernel.{bell,cat} files:
xchg(X,V) __xchg{mb}(X,V)
cmpxchg(X,V,W) __cmpxchg{mb}(X,V,W)
spin_lock(X) { __lock(X); }
spin_unlock(X) { __unlock(X); }
spin_trylock(X) __trylock(X)
spin_is_locked(X) __islocked(X)
atomic_add(V,X) { __atomic_op(X,+,V); }
atomic_and(V,X) { __atomic_op(X,&,V); }
atomic_or(V,X) { __atomic_op(X,|,V); }
atomic_xor(V,X) { __atomic_op(X,^,V); }
atomic_fetch_add(V,X) __atomic_fetch_op{mb}(X,+,V)
atomic_fetch_and(V,X) __atomic_fetch_op{mb}(X,&,V)
atomic_fetch_or(V,X) __atomic_fetch_op{mb}(X,|,V)
atomic_fetch_xor(V,X) __atomic_fetch_op{mb}(X,^,V)
atomic_xchg(X,V) __xchg{mb}(X,V)
atomic_cmpxchg(X,V,W) __cmpxchg{mb}(X,V,W)Just deleted a bunch of lin

es!!!If only it were that easy...

27

Map From BPF to LKMM C Code

● The herd7 event structures are different for C
code and assembly code (of any type)

● Assembly has constraints
– For example, R0 is special for BPF_CMPXCHG

● Pitfalls converting branches into “if”/”while”

28

Map From BPF to LKMM C Code

● The herd7 event structures are different for C
code and assembly code (of any type)

● Assembly has constraints
– For example, R0 is special for BPF_CMPXCHG

● Pitfalls converting branches into “if”/”while”

Need hardware memory model

29

Map From BPF to LKMM C Code

● The herd7 event structures are different for C
code and assembly code (of any type)

● Assembly has constraints
– For example, R0 is special for BPF_CMPXCHG

● Pitfalls converting branches into “if”/”while”

Need hardware memory modelBut LKMM useful debugging aid

30

Map From BPF to LKMM C Code

● The herd7 event structures are different for C
code and assembly code (of any type)

● Assembly has constraints
– For example, R0 is special for BPF_CMPXCHG

● Pitfalls converting branches into “if”/”while”

Need hardware memory modelBut LKMM useful debugging aid

Or vice versa!

31

Just Use Hardware Memory Model!

32

Just Use Hardware Memory Model!

● X86 is too strong
– We don’t want BPF JITs to emit memory-barrier

instructions after every conditional branch on ARMv8 and
PowerPC

● PowerPC is not actively developed
– Also larx/stcx instead of atomic instructions

● ARMv8?

33

ARMv8 Memory Model
● Actively developed and maintained
● Well designed (once you understand it!)
● Fully featured (e.g., mixed sizes)

– Including load-acquire/store-release
● Includes irrelevant hardware features
● Stronger than PowerPC and 32-bit ARM

34

ARMv8 Memory Model
● Actively developed and maintained
● Well designed (once you understand it!)
● Fully featured (e.g., mixed sizes)

– Including load-acquire/store-release
● Includes irrelevant hardware features
● Stronger than PowerPC and 32-bit ARM

Worth looking into

35

The ARMv8 Memory Model

36

How to Weaken ARMv8 As Needed?

● Review ARM's AArch64 Application Level
Memory Model (ARM DDI 0487J.a ID042523),
section B2.3 (31 pages)
– Remove anything PowerPC cannot order
– Remove other-multicopy atomicity
– Other issues hidden by lack of BPF weak barriers

37

How to Weaken ARMv8 As Needed?

● Review ARM's AArch64 Application Level
Memory Model (ARM DDI 0487J.a ID042523),
section B2.3 (31 pages)
– Remove anything PowerPC cannot order
– Remove other-multicopy atomicity
– Other issues hidden by lack of BPF weak barriersThe following slides review a couple

of the more entertaining examples

38

Example 1: Dependency Ordered
Before?

39

Dependency Ordered Before?

Disturbing example from ARMv8:
● Dependency-ordered-before: A dependency creates externally-visible order

between a Read Memory effect and another Memory effect generated by the
same Observer. A Read Memory effect R1 is Dependency-ordered-before a
Read or Write Memory effect RW2 from the same Observer if R1 appears in
program order before RW2 and any of the following cases apply:
– ...
– RW2 is a Write Memory effect W2 that appears in program order after an Explicit Read

or Write Memory effect RW3 and there is an Address dependency from R1 to RW3.
– ...

40

Dependency Ordered Before?

Read R1
Read or Write

RW3
Write W2

Program
order

R1 determines
address of RW3

Program
order

ARMv8 nevertheless orders R1 before W2!!!

W2 unrelated to
both R1 and RW3

41

Dependency Ordered Before?

● Example Linux-kernel code fragment:
 r1 = rcu_dereference(gp);

 // r1 is a pointer to an array

 WRITE_ONCE(r1[i].value, 42);

 WRITE_ONCE(x, “This is a test”);

 // Write to x ordered after read from gp???

42

Dependency Ordered Before?

● Example Linux-kernel code fragment:
 r1 = rcu_dereference(gp);

 // r1 is a pointer to an array

 WRITE_ONCE(r1[i].value, 42);

 WRITE_ONCE(x, “This is a test”);

 // Write to x ordered after read from gp???
A question for a memory model!!!

43

Check Dependency Ordered Before

Read R1
Read or Write

RW3
Write W2

Program
order

Program
order

44

Check Dependency Ordered Before

Read R1
Read or Write

RW3
Write W2

Program
order

Program
order

Read R2 Full Barrier Write W1
Program

order
Program

order

45

PPC Dependency Ordered Before?
PPC ARMv8DOB5-PPC
{
0:r2=x; 0:r4=y; 0:r6=z;
1:r2=x; 1:r4=y; 1:r6=z;
}
 P0 | P1 ;
 li r1,1 | li r1,1 ;
 lwz r3,0(r2) | lwz r3,0(r6) ;
 xor r5,r3,r3 | sync ;
 add r4,r5,r4 | stw r1,0(r2) ;
 stw r1,0(r4) | ;
 stw r1,0(r6) | ;
locations [x;y;z]
exists (0:r3=1 /\ 1:r3=1)

46

PPC Dependency Ordered Before?
$ herd7 ARMv8DOB5-PPC.litmus
Test ARMv8DOB5-PPC Allowed
States 3
0:r3=0; 1:r3=0; [x]=1; [y]=1; [z]=1;
0:r3=0; 1:r3=1; [x]=1; [y]=1; [z]=1;
0:r3=1; 1:r3=0; [x]=1; [y]=1; [z]=1;
No
Witnesses
Positive: 0 Negative: 3
Condition exists (0:r3=1 /\ 1:r3=1)
Observation ARMv8DOB5-PPC Never 0 3
Time ARMv8DOB5-PPC 0.01
Hash=94585bab1e0261eb46eac418ba00b2f5

47

PPC Dependency Ordered Before?
$ herd7 ARMv8DOB5-PPC.litmus
Test ARMv8DOB5-PPC Allowed
States 3
0:r3=0; 1:r3=0; [x]=1; [y]=1; [z]=1;
0:r3=0; 1:r3=1; [x]=1; [y]=1; [z]=1;
0:r3=1; 1:r3=0; [x]=1; [y]=1; [z]=1;
No
Witnesses
Positive: 0 Negative: 3
Condition exists (0:r3=1 /\ 1:r3=1)
Observation ARMv8DOB5-PPC Never 0 3
Time ARMv8DOB5-PPC 0.01
Hash=94585bab1e0261eb46eac418ba00b2f5

PowerPC orders this!!!

48

LKMM Dependency Ordered Before?

C ARMv8DOB5-LKMM

{
 x=y;
}

P0(int *u, int *x, int *y, int *z)
{
 int r1 = READ_ONCE(*x);
 WRITE_ONCE(*r1, 1);
 WRITE_ONCE(*z, 1);
}

P1(int *u, int *x, int *y, int *z)
{
 int r1 = READ_ONCE(*z);
 smp_mb();
 WRITE_ONCE(*x, u);
}

locations [x;y;z]
exists (0:r1=u /\ 1:r1=1)

49

LKMM Dependency Ordered Before?
$ herd7 -conf linux-kernel.cfg ARMv8DOB5-LKMM.litmus
Test ARMv8DOB5-LKMM Allowed
States 4
0:r1=u; 1:r1=0; [x]=u; [y]=0; [z]=1;
0:r1=u; 1:r1=1; [x]=u; [y]=0; [z]=1;
0:r1=y; 1:r1=0; [x]=u; [y]=1; [z]=1;
0:r1=y; 1:r1=1; [x]=u; [y]=1; [z]=1;
Ok
Witnesses
Positive: 1 Negative: 3
Condition exists (0:r1=u /\ 1:r1=1)
Observation ARMv8DOB5-LKMM Sometimes 1 3
Time ARMv8DOB5-LKMM 0.01
Hash=0bb0204225e06470ad922579dd92f14c

50

LKMM Dependency Ordered Before?
$ herd7 -conf linux-kernel.cfg ARMv8DOB5-LKMM.litmus
Test ARMv8DOB5-LKMM Allowed
States 4
0:r1=u; 1:r1=0; [x]=u; [y]=0; [z]=1;
0:r1=u; 1:r1=1; [x]=u; [y]=0; [z]=1;
0:r1=y; 1:r1=0; [x]=u; [y]=1; [z]=1;
0:r1=y; 1:r1=1; [x]=u; [y]=1; [z]=1;
Ok
Witnesses
Positive: 1 Negative: 3
Condition exists (0:r1=u /\ 1:r1=1)
Observation ARMv8DOB5-LKMM Sometimes 1 3
Time ARMv8DOB5-LKMM 0.01
Hash=0bb0204225e06470ad922579dd92f14cLKMM does not order th

is!!!

51

LKMM Dependency Ordered Before?
$ herd7 -conf linux-kernel.cfg ARMv8DOB5-LKMM.litmus
Test ARMv8DOB5-LKMM Allowed
States 4
0:r1=u; 1:r1=0; [x]=u; [y]=0; [z]=1;
0:r1=u; 1:r1=1; [x]=u; [y]=0; [z]=1;
0:r1=y; 1:r1=0; [x]=u; [y]=1; [z]=1;
0:r1=y; 1:r1=1; [x]=u; [y]=1; [z]=1;
Ok
Witnesses
Positive: 1 Negative: 3
Condition exists (0:r1=u /\ 1:r1=1)
Observation ARMv8DOB5-LKMM Sometimes 1 3
Time ARMv8DOB5-LKMM 0.01
Hash=0bb0204225e06470ad922579dd92f14cLKMM does not order th

is!!!What should BPF do???

52

LKMM Dependency Ordered Before?

C ARMv8DOB5-LKMM

{
 x=y;
}

P0(int *u, int *x, int *y, int *z)
{
 int r1 = READ_ONCE(*x);
 WRITE_ONCE(*r1, 1);
 WRITE_ONCE(*z, 1);
}

P1(int *u, int *x, int *y, int *z)
{
 int r1 = READ_ONCE(*z);
 smp_mb();
 WRITE_ONCE(*x, u);
}

locations [x;y;z]
exists (0:r1=u /\ 1:r1=1)

53

BPF Dependency Ordered Before?
● Why do ARMv8 and PowerPC order stores?

54

BPF Dependency Ordered Before?
● Why do ARMv8 and PowerPC order stores?

– They order accesses to a single location

55

BPF Dependency Ordered Before?
● Why do ARMv8 and PowerPC order stores?

– They order accesses to a single location
– And before that load completes, the hardware has

no idea whether the two stores are to the same
location!!!

56

BPF Dependency Ordered Before?
● Why do ARMv8 and PowerPC order stores?

– They order accesses to a single location
– And before that load completes, the hardware has

no idea whether the two stores are to the same
location!!!

● Why doesn’t LKMM order these stores???

57

BPF Dependency Ordered Before?
● Why do ARMv8 and PowerPC order stores?

– They order accesses to a single location
– And before that load completes, the hardware has

no idea whether the two stores are to the same
location!!!

● Why doesn’t LKMM order these stores???
– LKMM knows the full execution a priori

58

BPF Dependency Ordered Before?
● Why do ARMv8 and PowerPC order stores?

– They order accesses to a single location
– And before that load completes, the hardware has

no idea whether the two stores are to the same
location!!!

● Why doesn’t LKMM order these stores???
– LKMM knows the full execution a prioriBPF has no a priori k

nowledge,

& thus should follow PPC & ARM

59

Example 2: Hazard Ordered Before?

60

Hazard Ordered Before?

Another disturbing example from ARMv8:
● Hazard-ordered-before: An Effect E1 is Hazard-ordered-before an

effect E2 if all of the following apply:
– E1 is an Explicit Read Memory effect R1.
– R1 appears in program-order before an Explicit Read Memory effect R3

– R1 and R3 access the same Location.
– R1 and E2 are from different Observers.
– R3 is Coherence-before E2.
– E2 is an Explicit Write Memory effect W2.

61

Check Hazard Ordered Before???

Read R1 Reread R3
Program

order

Write W2

Coherence
Order

Coherence Order???
(just one variable)

62

Hazard Ordered Before?

● Example Linux-kernel code fragment:
– Thread 0:

 r1 = READ_ONCE(x); // This cannot return 1!!!

 r2 = READ_ONCE(x); // Returns 0

– Thread 1:
 WRITE_ONCE(x, 1);

63

Check Hazard Ordered Before???

Read x R1 Read x R3
Program

Order

Write x R2

co? co?

64

Check Hazard Ordered Before???

Read x R1 Read x R3
Program

Order

Write x R2

co? co?

Clearly need something before

reads and after write, but what?

65

Use Light-Weight Reads-From Link?

Program
Order Read x R1 Read x R3

Read y R4

(Acquire)
Program

Order

Write x R2
Write y R4

(1, Release)
Program

Order

co?co? co?

66

Use Light-Weight Reads-From Link?

Program
Order Read x R1 Read x R3

Read y R4

(Acquire)
Program

Order

Write x R2
Write y R4

(1, Release)
Program

Order

co?co? co?

Test code fully synchronizes,

obscuring ordering

67

Use Light-Weight Reads-From Link?

Program
Order Read x R1 Read x R3

Read y R4

(Acquire)
Program

Order

Write x R2
Write y R4

(1, Release)
Program

Order

co?co? co?

Test code fully synchronizes,

obscuring ordering

Need a little help from a

litmus test named “R”...

68

Check Hazard Ordered Before???

po po po Read x R1 Read x R3smp_mb()Write y R4

(2)

po Write x R2
Write y R4
(1,Release)

co?co? co?

69

PPC Hazard Ordered Before?
PPC ARMv8HOB-PPC
{
0:r2=x; 0:r4=y;
1:r2=x; 1:r4=y;
}
 P0 | P1 ;
 li r1, 2 | li r1,1 ;
 stw r1,0(r2) | stw r1,0(r4) ;
 sync | lwsync ;
 lwz r3,0(r4) | stw r1,0(r2) ;
 lwz r5,0(r4) | ;
locations [x;y]
exists (0:r3=0 /\ 0:r5=0 /\ x=2)

70

PPC Hazard Ordered Before?
$ herd7 ARMv8HOB-PPC.litmus
Test ARMv8HOB-PPC Allowed
States 6
0:r3=0; 0:r5=0; [x]=1; [y]=1;
0:r3=0; 0:r5=0; [x]=2; [y]=1;
0:r3=0; 0:r5=1; [x]=1; [y]=1;
0:r3=0; 0:r5=1; [x]=2; [y]=1;
0:r3=1; 0:r5=1; [x]=1; [y]=1;
0:r3=1; 0:r5=1; [x]=2; [y]=1;
Ok
Witnesses
Positive: 1 Negative: 5
Condition exists (0:r3=0 /\ 0:r5=0 /\ [x]=2)
Observation ARMv8HOB-PPC Sometimes 1 5
Time ARMv8HOB-PPC 0.01
Hash=a159a4cc43d21ddd63a9a1e230d266d1

71

PPC Hazard Ordered Before?
$ herd7 ARMv8HOB-PPC.litmus
Test ARMv8HOB-PPC Allowed
States 6
0:r3=0; 0:r5=0; [x]=1; [y]=1;
0:r3=0; 0:r5=0; [x]=2; [y]=1;
0:r3=0; 0:r5=1; [x]=1; [y]=1;
0:r3=0; 0:r5=1; [x]=2; [y]=1;
0:r3=1; 0:r5=1; [x]=1; [y]=1;
0:r3=1; 0:r5=1; [x]=2; [y]=1;
Ok
Witnesses
Positive: 1 Negative: 5
Condition exists (0:r3=0 /\ 0:r5=0 /\ [x]=2)
Observation ARMv8HOB-PPC Sometimes 1 5
Time ARMv8HOB-PPC 0.01
Hash=a159a4cc43d21ddd63a9a1e230d266d1PowerPC can make this happen!!!

72

How Does PPC Make This Happen?

● Stores are atemporal with weak barriers
– Different PPC CPUs see stores in different orders
– ARMv8 CPUs not doing stores agree on order

● “Other-multicopy atomicity”, which ARMv8 does and PPC
does not do

● Section 15.3.8 (“A Counter-Intuitive Case Study”)
of perfbook* gives step-by-step analysis

* https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

73

How Does PPC Make This Happen?

● Stores are atemporal with weak barriers
– Different PPC CPUs see stores in different orders
– ARMv8 CPUs not doing stores agree on order

● “Other-multicopy atomicity”, which ARMv8 does and PPC
does not do

● Section 15.3.8 (“A Counter-Intuitive Case Study”)
of perfbook* gives step-by-step analysis

* https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

But can ARMv8 make this happen?

74

ARMv8 Hazard Ordered Before?
AArch64 ARMv8HOB-AArch64
{
0:X2=x; 0:X4=y;
1:X2=x; 1:X4=y;
}
 P0 | P1 ;
 MOV X1,#1 | MOV X1,#1 ;
 STR X1,[X2] | STR X1,[X4] ;
 DMB SY | STLR X1,[X2] ;
 LDR X3,[X4] | ;
 LDR X5,[X4] | ;
locations [x;y]
exists (0:X3=0 /\ 0:X5=0 /\ x=2)

75

ARMv8 Hazard Ordered Before?
$ herd7 ARMv8HOB-AArch64.litmus
Test ARMv8HOB-AArch64 Allowed
States 3
0:X3=0; 0:X5=0; [x]=1; [y]=1;
0:X3=0; 0:X5=1; [x]=1; [y]=1;
0:X3=1; 0:X5=1; [x]=1; [y]=1;
No
Witnesses
Positive: 0 Negative: 4
Condition exists (0:X3=0 /\ 0:X5=0 /\ [x]=2)
Observation ARMv8HOB-AArch64 Never 0 4
Time ARMv8HOB-AArch64 0.02
Hash=58ec9f95130e00e226284e19adc7af48

76

ARMv8 Hazard Ordered Before?
$ herd7 ARMv8HOB-AArch64.litmus
Test ARMv8HOB-AArch64 Allowed
States 3
0:X3=0; 0:X5=0; [x]=1; [y]=1;
0:X3=0; 0:X5=1; [x]=1; [y]=1;
0:X3=1; 0:X5=1; [x]=1; [y]=1;
No
Witnesses
Positive: 0 Negative: 4
Condition exists (0:X3=0 /\ 0:X5=0 /\ [x]=2)
Observation ARMv8HOB-AArch64 Never 0 4
Time ARMv8HOB-AArch64 0.02
Hash=58ec9f95130e00e226284e19adc7af48

ARM really does not do this!

(Nor “R”)

77

How Does PPC Make This Happen?

● Stores are atemporal with weak barriers
– Different PPC CPUs see stores in different orders
– ARMv8 CPUs not doing stores agree on order

● “Other-multicopy atomicity”, which ARMv8 does and PPC
does not do

● Section 15.3.8 (“A Counter-Intuitive Case Study”)
of perfbook* gives step-by-step analysis

* https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

BPF does not do weak barrie
rs

Not yet, a
nyway...

78

ARMv8 Lessons Learned
● Avoiding conditional-move instruction does not simplify things much

– The cmpxchg instructions act similarly
● Avoiding other-multicopy atomicity simplifies things, but in complex ways

– The devil is in the details, and I bet some devils still live
● Great complexity arises from some ARMv8 features:

– MMU support (and faults), self-modifying code, cache-management instructions,
MMIO accesses, shareability domains, limited-ordering regions, and vector
instructions

● Weak barriers and weakly ordered instructions contribute some complexity
● Converging control flow a no-go for assembly languages (and gotos)

79

Why No BPF Assembly Language???

80

Your BPF Assembly Language!!!
BPF S+fence+data

{
int x=0; int y=10;
0:r0=x; 0:r1=y;
0:r5=tmp; (* only used for the atomic op in P0 to enforce ordering *)
1:r0=x; 1:r1=y;
}

P0 | P1 ;
*(u32 *)(r0 + 0) = 2 | r2 = *(u32 *)(r1 + 0) ;
r6 = atomic_fetch_add((u64*)(r5 + 0), r6) | *(u32 *)(r0 + 0) = r2 ;
*(u32 *)(r1 + 0) = 0 | ;

exists (1:r2=0 /\ x=2)

81

And Your herd7 Output!!!

$ herd7 -model bpf_lkmm.cat S+fence+data.litmus
Test S+fence+data Allowed
States 3
1:r2=0; [x]=0;
1:r2=10; [x]=2;
1:r2=10; [x]=10;
No
Witnesses
Positive: 0 Negative: 3
Condition exists (1:r2=0 /\ [x]=2)
Observation S+fence+data Never 0 3
Time S+fence+data 0.00
Hash=a35dc5b17cde70582ebd0ea218dd3ba5

82

And Your herd7 Output!!!

$ herd7 -model bpf_lkmm.cat S+fence+data.litmus
Test S+fence+data Allowed
States 3
1:r2=0; [x]=0;
1:r2=10; [x]=2;
1:r2=10; [x]=10;
No
Witnesses
Positive: 0 Negative: 3
Condition exists (1:r2=0 /\ [x]=2)
Observation S+fence+data Never 0 3
Time S+fence+data 0.00
Hash=a35dc5b17cde70582ebd0ea218dd3ba5

Partial support fo
r both syntax

and LKMM-based memory model,

courtesy of Puranjay

https://github.com/puranjaymohan/herdtools7.git herd/libdir/bpf_lkmm.cat

83

What is Next?

84

Goals of Formal BPF Memory Model

● Simple hardware-level model
● Consistent with LKMM

– Prefer to avoid forbidding reorderings LKMM allows
● Low-overhead mappings to supported hardware

– BPF should avoid forbidding reorderings allowed by ARMv8,
PowerPC, RISC-V, x86, …

● Ability to grow as BPF instruction set grows

85

BPF Memory Model To-Do List

● Ordering for BPF branch instructions into herd7
● Hardware, Clang or GCC BPF mnemonics? (Poll!!!)
● Puranjay Mohan and Hernan Luis de Soto to ensure litmus-test

compatibility
– Puranjay working on herd7, Hernan on dartagnan

● Lots of memory-model validation
● Determine exact form of standard text

– Base on LKMM, ARMv8, or something else?

86

BPF Memory Model Validation

● Check tools/memory-model/litmus-tests
– In progress

● Check test6.pdf litmus tests [1]
● Check appropriate tests from github litmus [2]
● Verify BPF JIT ordering (in progress)

[1] https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test6.pdf
[2] https://github.com/paulmckrcu/litmus

87

Demo

88

Summary

89

Summary: BPF Memory Model

● Good progress, but much work remains
● Initial wording for standard text, subject to change
● Good frameworks for added BPF instructions,

when and if
● We have a prototype of a BPF full-state-space-

search formal-verification tool!!!

90

For More Information

● Linux-kernel BPF standards directory (includes instruction definitions)
– Documentation/bpf/standardization

● The Herd toolsuite for memory-model verification and testing
– https://github.com/herd/herdtools7
– https://github.com/puranjaymohan/herdtools7.git with BPF prototype

● “Is Parallel Programming Hard, And, If So, What Can You Do About It?”
– Chapter 12 (“Formal Verification”)

● https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

91

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

