
Instruction Pointers,
Static Keys,
Jump Tables

LSF/MM/BPF 2024
Anton Protopopov

(now part of Cisco)

https://www.linkedin.com/in/aspsk/
https://github.com/aspsk

Recap: BPF Static Keys API

● The previous version of BPF Static Keys wasn’t too successful

(not generic enough)

● Let’s take a look on how static keys can be implemented in

more generic way, such that the core parts can be reused for

other features (jump labels, etc.)

https://lpc.events/event/17/contributions/1608/

Recap: BPF Static Keys API, Example

BPF Static Keys: branch is unlikely, key is off

BPF Static Keys: branch is unlikely, key is off

To implement Static Keys the following primitives are needed:

● Two new BPF instructions goto_or_nop/nop_or_goto (so that
the verifier check such instructions as JA with two branches)

● A mechanism to reference a set of such instructions
● A mechanism to patch all instructions referenced by a set:

○ syscall/kfunc(set, on/off)
● Typical way to represent objects in BPF is a map, so let’s

introduce a new map, BPF_MAP_TYPE_INSN_SET

BPF Static Keys: let’s build API, v2

BPF Static Keys: let’s build API, v2, comics

…
goto_or_nop
…
nop_or_goto
…

i

j

i
j

bpf_program bpf_map

…
…

BPF Static Keys: let’s build API, v2, comics

…
goto_or_nop
…
nop_or_goto
…

i

j

i
j

bpf_program bpf_map

…
goto_or_nop
…
nop_or_goto
…

i’

j’

bpf_program, xlated

…
…

i’
j’

bpf_map

…
…

Load, verify

BPF Static Keys: let’s build API, v2, comics

…
goto_or_nop
…
nop_or_goto
…

i

j

i
j

bpf_program bpf_map

…
goto_or_nop
…
nop_or_goto
…

i’

j’

bpf_program, xlated

…
jmp
…
nop
…

x

y

bpf_program, jitted

…
…

i’
j’

bpf_map

x
y

Load, verify
jit

BPF Static Keys: let’s build API, v2, comics

…
goto_or_nop
…
nop_or_goto
…

i

j

bpf_program, xlated

…
jmp
…
nop
…

x

y

bpf_program, jitted
syscall(BPF_STATIC_KEY_UPDATE, map_fd, 1)

i
j

bpf_map

x
y

…
nop
…
jmp
…

x

y

bpf_program, jitted
syscall(BPF_STATIC_KEY_UPDATE, map_fd, 0)

The new map works as follows:

● Before program load a map is populated with instructions
offsets

● On program load map becomes read-only to userspace (and it’s
always read-only on the BPF side)

● On program load every instructions in this map is relocated
when instructions are added/deleted

● During JIT native instructions/offsets are saved in the map

BPF_MAP_TYPE_INSN_SET

A new API should be added to PROG_LOAD

● INSN_SET map (in the context of static keys) is not referenced by a

BPF program, so we need to mechanism to tell the verifier about it

● Andrii proposed to use attr.fd_array by adding a new field

attr.fd_array_cnt, however, it turned out that this array is sparse

● So, I propose to add two new fields to attrs:

○ attr.bind_fd_array/attr.bind_fd_array_cnt
● Functionality is similar to bpf(BPF_PROG_BIND_MAP), but atomic

BPF_MAP_TYPE_INSN_SET, continued

BPF Static Keys API

In summary, to support static keys this is required to:

● Add new instructions goto_or_nop/nop_or_goto

● Add new map BPF_MAP_TYPE_INSN_SET

● Add new attr.bind_fd_array/attr.bind_fd_array_cnt fields

● Add a new syscall (and, maybe, kfunc)

○ bpf(STATIC_KEY_UPDATE,

 attrs={.key = map_fd, .on = <bool>})

INSN_SET: jump tables

● The original request to generalize static keys implementation

was to implement jump tables in BPF

● With INSN_SET we can implement goto Rx (or goto *Rx)

…
goto Rx
…
insn j
…

j

i
j

bpf_program bpf_map

…
…insn i

…
i

https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html

INSN_SET: jump tables

● Verifier must check that Rx was loaded from a map of type
INSN_SET, say M

● The goto rX instruction must reference the same map M, so
that visit_insn() can build a proper graph

● Something like
BPF_JMP | BPF_X |BPF_JA, SRC=Rx, DST=0, off=0, imm=fd(M)

● Some care is needed to verify access to the map from BPF
programs (readonly access)

Jump tables: use cases and C interface
● Implement long switches vs. a long list of if..else
● Implement interpreters:

void *array[] = { &&spam, &&eggs, &&bacon };
…
goto *array[i];

● Can this be automatically translated to proper low-level code?
○ Create a map M_array for array
○ goto *array[i] translates to

■ R1 = map_lookup(M_array, i)
■ goto *R1 # .imm=fd(M_array)

● Q: how hard is the llvm/gcc part?

Questions?

https://www.linkedin.com/in/aspsk/
https://github.com/aspsk

