
Tetragon:
Auditing and Enforcement
John Fastabend

Security Observability &
Runtime Enforcement

Agenda: Walkthrough a BPF Networking Stack

● L7: State of parsers

● L3/L4: Process Aware Network Enforcement

● L2: What is going on down here?

● Push vs Pull

● Next Steps

L7: Parsers Why?

kTLS + L7: Why?

L7: Parsers as (security) kernel primitive

L7: Parsers as (security) kernel primitive
Life cycle

sockmap 1. Attach BPF
programs

socket

2. connect(fd, …)

ESTABLISED

3. update_elem(key, sock(fd))

CLOSE

4. delete_elem(...); kfree_rcu()

L7: Parsers as (security) kernel primitive

L7: Parsers as (security) kernel primitive

● Streaming Parsers: 5.15*, 6.1*, 6.5, 6.8, bpf-next
● Distributions: AL2022, AL2023, Ubuntu 22.04/24.04, GKE rapid
● Architecture: ARM, X86
● CI:

○ Nginx compliance test
○ Tetragon CI tests
○ ./selftests/bpf/sockmap

L7: Parsers as (security) kernel primitive

● Verdict/StrParser:

Open issue:

Updates tp->copied_seq as data is aggregate. But, copied_seq is used
to wakeup tcp_poll().

Result:

Application may wake up before data is copied to socke receive_queue.
Fix is to delay copied_seq update until data is enqueued in
receive_queue after BPF program runs. Care is needed because
copied_seq has implications on acks.

L7: Parsers as (security) kernel primitive

● Zerocopy:
If we allow this it is problematic for security. Zero copy and L7 security
tooling do not seem to compatible.

syzbot reported an issue that needs to be addressed.

Just block zerocopy on BPF sockets? But it is still useful for !security
and best effort.

L7: Parsers as (security) kernel primitive
Future

sockmap 1. Attach BPF
programs

socket

2. connect(fd, …)

ESTABLISED

3. update_elem(key, sock(fd))

CLOSE

4. delete_elem(...); kfree_rcu()

L7: Parsers as (security) kernel primitive
Future

1. Load BPF
program

socket

2. connect(fd, …)

ESTABLISED

3. attach_bpf(sock, bpf_prog)

CLOSE

4. detach_bpf(...); kfree_rcu()

L7: Parsers as (security) kernel primitive
Future

KTLS:
● Library supported: Openssl 3.0
● Library in use:

○ Go crypto/tls
○ Java TLS
○ *

DTLS: ?
Quic: ?

L3: Audit and Enforcement

L3: Audit and Enforcement

L3: Audit and Enforcement:
If I had a TCAM …

● Policy enforcement requires wildcard lookups

 web-client : * : ebpf.io
 web-client : 443 : *
 * : 80 : *

● Without TCAM we end up with multiple hash lookups.

● Todo understand algorithm trade-offs and performance
testing

L2: NIC Stats

● NIC:
○ TX / RX bytes
○ Drops, Errors

NIC

L2: NIC Stats

● NIC:
○ Lack generic mechanism to understand details
○ netns(), dev() iterators missing

NIC

L2: Qdisc Occupancy and time on Qdisc

● Qdisc: Occupancy histogram

Qdisc

Tetragon Interesting Comment:
Pull not Push

● Current Model:
○ BPF

■ Observe interesting event
■ Apply Filters
■ Push Events through Ring Buffer

○ Userspace
■ Reads Ring Buffer
■ Logic to aggregate, summarize, …
■ Push to Pipeline/DB

Thank you!

cilium/tetragon
@ciliumproject
cilium.io

@jrfastab

https://twitter.com/isovalent
https://github.com/isovalent
https://isovalent.com/

