
Polymorphic Kfuncs
Context-aware kfunc relocations

David Vernet
Kernel engineer

Agenda
01 Background and motivation

02 Design proposal

01 Background and motivation

BPF programs use kfuncs to call into
vmlinux (or modules)
- Conceptually similar to BPF helpers (not UAPI bound)
- Provide abstractions to BPF programs to access kernel objects and logic

01 Background and motivation

Some kfuncs are basic building blocks
- Not particular to any specific program type
- Have well defined, universal semantics

- bpf_task_acquire() / bpf_task_release() -> Acquire and release a struct task_struct kptr
- bpf_rbtree_first() / bpf_rbtree_add_impl()... -> Use rbtrees in BPF prog

01 Background and motivation

Some kfuncs have context-specific
semantics
- Only applicable to specific program types, e.g. struct_ops programs
- Semantics may depend on where a kfunc is being invoked from

- struct_ops prog A expects different behavior than struct_ops prog B

01 Background and motivation

Quick aside: Dispatch Queues

01 Background and motivation

Dispatch Queues (DSQs) are basic building
block of scheduler policies

- Conceptually similar to runqueue
- Every core has a special “local” DSQ called SCX_DSQ_LOCAL
- Otherwise, can create as many or as few as needed

- Gives schedulers flexibility
- Per-domain (NUMA node, CCX, etc) DSQ?
- Global DSQ?
- Per-cgroup DSQ?

- The data structure / abstraction layer for managing tasks between main kernel <-> BPF scheduler (more on
next slide).

01 Background and motivation

- Scheduler “dispatches” tasks to
global DSQ at enqueue time

- Not where tasks are pulled from
when being scheduled in

- Task must be in local DSQ to be
chosen to run

- Dispatching is done with
scx_bpf_dispatch() kfunc

Example 0: Global FIFO – enqueuing

scx_bpf_dispatch() has different semantics
in different contexts
- sched_ext struct_ops map has many callbacks defined, including:

- ops.select_cpu(): Choose a CPU to migrate a task to at wakeup or fork time
- ops.enqueue(): Enqueue a task in the scheduler
- …
- ops.dispatch(): CPU out of tasks to run, choose a new one

- scx_bpf_dispatch() behaves differently in ops.select_cpu() and ops.enqueue(), compared to
ops.dispatch()

01 Background and motivation

- May not drop task CPU’s rq lock
- Cannot dispatch directly to remote CPU
- Can dispatch directly to local CPU

- Dispatch is “direct”
- Task is dispatched directly from

enqueue, rather than being enqueued in
the BPF scheduler

- scx_bpf_dispatch() records per-CPU
variable to mark dispatch choice,
consumes later on in scheduling pipeline

- Only a single task can be dispatched
from this CPU within prog scope

01 Background and motivation

ops.dispatch()
- May drop task CPU’s rq lock

- Can dispatch directly to remote CPU by
doing lock dropping + reacquire

- Can also dispatch locally
- Dispatch is not direct

- Task is dispatched directly from
enqueue, rather than being enqueued in
the BPF scheduler

- Many tasks can be dispatched, one after
the other

ops.select_cpu() +
ops.enqueue()

- Implementation enforces only calling
waking/enqueuing task can be dispatched if
called from that CPU

- Uses different logic to record dispatch
decision. Everything is tracked with
per-CPU data structures
- Can only dispatch at most once
- Can only dispatch task being enqueued
- Cannot dispatch to remote CPU local

DSQ

01 Background and motivation

ops.dispatch()
- Implementation allows multiple tasks

to be dispatched in sequence
- Can iterate over DSQ using bounded

loop iterator, select which task you
want

- Can dispatch to remote CPUs’
LOCAL_DSQs

ops.select_cpu() +
ops.enqueue()

Result: Two completely different
implementations, with same API
- Can we explicitly support this pattern in the BPF framework?

01 Background and motivation

02 Design proposal

Currently, call BTF ID → specific kfunc
- In existing code, a BTF ID corresponds to exactly one kfunc
- libbpf does relocations, kernel sees BTF ID and patches in kfunc address

02 Design proposal

Every kfunc associated with exactly 1 ID
- Problem: Every kfunc call is associated with exactly 1 BTF_ID
- Kfunc calls are static – specify BTF ID → patch kfunc

02 Design proposal

How to extend? Verifier asks subsystem for
real kfunc ID
- Kfunc → kfunc mappings need to happen at prog granularity

- struct bpf_struct_ops already has per-member callbacks, e.g. init_member()
- Must be located in the kernel (right?)

- libbpf has no way of mapping kfunc calling context in a prog → actual kfunc symbol. Completely depends on the
struct_ops implementation

- Can we add a new .kfunc_validate_reloc() function that lets the program map a kfunc ID passed by the verifier
to the BTF ID of the kfunc they actually want to invoke?
- Invoked for every kfunc call, for every struct_ops prog
- Fixups happen in the kernel

 s32 (*kfunc_validate_reloc)(const struct btf_type *t,

 const struct btf_member *member,

 struct bpf_prog *prog,

 u32 kfunc_id);

02 Design proposal

Proposed function signature
- s32 (*kfunc_validate_reloc)(const struct btf_type *t,

 const struct btf_member *member,

 struct bpf_prog *prog,

 u32 kfunc_id);

- Return kfunc id of kfunc exported from struct_ops implementation, 0 if no relocation necessary, or negative error
code for error

02 Design proposal

- A somewhat ergonomic API. Each
kfunc handled separately, provides
well-contained logic to implement on
the struct_ops implementation side

- Gives struct_ops implementations a
way to reject improper kfunc call at
verify time instead of runtime

02 Design proposal

Cons
- Kind of a weird API to have both

.check_member(), and another kfunc for
doing validation

- More callback logic in the verifier. I know
that’s not always a popular design choice

- Requires runtime logic for what’s really a
static configuration

- Requires struct_ops implementation to do
BTF resolution and track BTF IDs

Pros

Static / build-time configuration would be a
nicer API
- Which kfuncs should be called from which contexts is not really dynamic
- Can we make this a build time thing?
- Would require associating struct_ops entries / progs with kfunc IDs that map to other kfunc IDs
- Probably a big pain to implement, but would end up being nicer for end users

- Doesn’t seem like a good time investment until there are more struct_ops implementations
- Bigger fish to fry – declaring kfuncs similar to EXPORT_SYMBOL_GPL would be more ideal

02 Design proposal

