
Neill Kapron <nkapron@google.com> May 2024

Verified Boot with BPF



Background



Three BPF user stories: Networking, System, Vendor
Separate update/release timelines for each user story
Long term compatibility
New Android versions must run on previous Android kernels

Goal: Modern BPF in Android



LSM Proposal from LPC23

For more information, see the LPC23 presentation: https://lpc.events/event/17/contributions/1599



“That sounds great, but it must maintain verified boot.”

Security Review:



Broken Chain of Trust

BPF program 
stored on verified 

FS

BPF Program in memory 
after relocations

Userspace Loader
Kernel

Can’t verify that the 
bytes received during 
BPF_PROG_LOAD are 
from original program 

stored on disk

Potential 
Attack 
Vector



Single trusted loader (Android) (1)
Signed shared library objects
Relocation playbook
Light skeleton
BPF Signing using fsverity (Lorenz Bauer) (2)

Approaches considered

1. https://cs.android.com/android/platform/superproject/+/master:system/bpf/bpfloader/BpfLoader.cpp
2. http://vger.kernel.org/bpfconf2023_material/Lorenz_Bauer_-_BPF_signing_using_fsverity_and_LSM_gatekeeper.pdf



BPF_PROG_LOAD_FD



Established Chain of Trust

Userspace Kernel

BPF program stored 
on verified FS

Kernel performs 
relocations

Verifier
Userspace application 
calls BPF() Syscall with 
BPF_PROG_LOAD_FD



Extend the BPF syscall with BPF_PROG_LOAD_FD
Userspace passes a file descriptor to the kernel
Kernel opens the ELF file
Parse ELF
Create Maps
Pass programs to verifier

Moving loader functionality to the kernel



Extend the BPF syscall with BPF_PROG_LOAD_FD
Userspace passes a file descriptor to the kernel
Kernel opens the ELF file
Validates ELF format
Parse ELF
Create Maps
Perform Map relocations
BTF
CO-RE
Pass bytecode to verifier
…

Reality of moving loader functionality to the kernel



Kernel provides zlib: include/linux/zlib.h
Limited ELF handling found in:

fs/binfmt_elf.c
kernel/kexec_elf.c
kernel/module/main.c
others…

Dependency Resolution



Enables the verified boot path
Signature verification could be implemented for use on non-signed filesystems
Focused loader development (currently each library must provide their own)
Resolves potential library incompatibility stories
Eases the BPF preload story

Benefits



How does this manage BPF object lifecycle?
What is the syscall return value?
BPF ELF format specification
Compatibility story (How does this translate to other BPF runtimes?)

Questions



BPF ELF format



Documentation/bpf/btf.rst - Defines .BTF, .BTF.ext sections
Libbpf: Documentation/bpf/libbpf/program_types.rst

eBPF ELF Profile Specification, v0.1 (Dave Thaler): 
ietf.org/archive/id/draft-thaler-bpf-elf-00.html

BPF ELF format



Questions/Comments?


