
Cross-platform BPF 
compiler issues

Dave Thaler

1LSF/MM/BPF 2024



Multiple compilers, multiple runtimes

Compilers:
• LLVM/clang, gcc, other backends from rust or other compilers?

Runtimes:
• Linux kernel, eBPF for Windows, uBPF, rbpf, hBPF, bpftime, offload 

cards (e.g., Netronome), etc.

Goal:
 allow using a compiler with any BPF-compliant runtime

2LSF/MM/BPF 2024



What does “compliant” mean?
• draft-ietf-bpf-isa defines “conformance groups”

• Logical units of functionality, where a runtime conforms to a set of groups
• Only “base32” is required

3

Name Description Includes status

atomic32 32-bit atomic instructions - Permanent

atomic64 64-bit atomic instructions atomic32 Permanent

base32 32-bit base instructions - Permanent

base64 64-bit base instructions base32 Permanent

divmul32 32-bit division, multiplication, and modulo - Permanent

divmul64 64-bit division, multiplication, and modulo divmul32 Permanent

packet Legacy packet instructions - Historical

LSF/MM/BPF 2024



Example: add some instructions to “example”

name description includes excludes status

example Example instructions - - Permanent

4

Conformance groups:

Instructions:

opcode … description groups

aaa … Example instruction 1 example

bbb … Example instruction 2 example

LSF/MM/BPF 2024



Example: add some instructions to “example”

name description includes excludes status

example Example instructions - - Permanent

examplev2 Newer set of example 
instructions

example - Permanent

5

Conformance groups:

Instructions:

opcode … description groups

aaa … Example instruction 1 example

bbb … Example instruction 2 example

ccc … Example instruction 3 examplev2

ddd … Example instruction 4 examplev2

LSF/MM/BPF 2024



Example: deprecate some instrs in “example”

name description includes excludes status

example Example instructions - - Permanent

6

Conformance groups:

Instructions:

opcode … description groups

aaa … Good example instruction 1 example

bbb … Good example instruction 2 example

ccc … Bad example instruction 3 example

ddd … Bad example instruction 4 example

LSF/MM/BPF 2024



Example: deprecate some instrs in “example”

name description includes excludes status

example Example instructions - - Permanent

legacyexampl
e

Legacy example instructions - - Historical

examplev2 Example instructions example legacyexample Permanent

7

Conformance groups:

Instructions:

opcode … description groups

aaa … Good example instruction 1 example

bbb … Good example instruction 2 example

ccc … Bad example instruction 3 example, legacyexample

ddd … Bad example instruction 4 example, legacyexample

LSF/MM/BPF 2024



Impact on runtimes and compilers

• A runtime conforms to a set of conformance groups
• Linux: base64, atomic64, divmul64, packet (plus groups those include)

• Other runtimes might have a different list
• E.g., an offload card that supports only 32-bit conformance groups

• Any new instructions require newly named conformance groups 
that should get registered

• Each runtime is responsible for documenting what conformance 
groups it supports

8LSF/MM/BPF 2024



Impact on compilers

• Compilers should allow specifying a set of conformance groups
• Ok to default to the set that Linux supports if desired
• Using “cpu versions” for BPF is historical

• Might be specified using deltas, or a full list, with some default (e.g., all current 
groups but packet)

• Runtime that supports packet and some future group (e.g., “callx”):
• Delta: --include_groups packet,callx
• Full: --groups base64,divmul64,atomic64,packet,callx

• Runtime without atomics:
• Delta: --exclude_groups atomic32
• Full: --groups base64,divmul64

• Runtime without 64-bit instructions:
• Delta: --exclude_groups base64,divmul64,atomic64
• Full: --groups base32,divmul32,atomic32

LSF/MM/BPF 2024 9



psABI issues

• How many BPF registers are there?
• Which ones are scratch vs saved across calls?
• Which register is the stack pointer?
• How large is the stack?
• How much stack space does a bpf2bpf callee get?

• Compiler has to either:
• Only support one psABI and thus only runtimes that use that one
• Have a way to specify which psABI to generate code for

LSF/MM/BPF 2024 10



Verifier issues

• Different runtimes may have different verifiers
• Linux kernel verifier, PREVAIL, possibly others

• Some compiler optimizations may not work with all verifiers
• E.g., PREVAIL collapses joins for scalability and so doesn’t support 

correlated branches sometimes generated in LLVM>11 with –O2
• See Alan’s talk earlier today

• Compiler optimizations might be independent of target (BPF) and 
so taking BPF-runtime specific data into account is even harder
• Probably fine if optimizations can be enabled/disabled at some level of 

granularity, whether by command line or by code pragmas etc.
• Hard if all-or-nothing like -O2

LSF/MM/BPF 2024 11


	Slide 1: Cross-platform BPF compiler issues
	Slide 2: Multiple compilers, multiple runtimes
	Slide 3: What does “compliant” mean?
	Slide 4: Example: add some instructions to “example”
	Slide 5: Example: add some instructions to “example”
	Slide 6: Example: deprecate some instrs in “example”
	Slide 7: Example: deprecate some instrs in “example”
	Slide 8: Impact on runtimes and compilers
	Slide 9: Impact on compilers
	Slide 10: psABI issues
	Slide 11: Verifier issues

