
BPF Performance testing
How to compare performance of the BPF runtime across platforms



Problem statement

• BPF programs are becoming cross-platform
• BPF programs are often in performance sensitive paths
• What can developers expect in terms of performance



Runtime performance

• Does this even matter?
• Direct impact to cycles per byte
• Direct impact to latency and jitter

• What should be measured?
• Runtime overhead – transition from kernel -> BPF VM
• Helper function performance

• How should it be measured?
• Platform neutral
• Repeatable 



github.com/microsoft/bpf_performance

• MIT Licensed project
• Collection of tiny BPF programs

• Written to be platform agnostic
• Compiled per platform

• Uses libbpf to be platform agnostic
• Loads program into kernel
• Schedules via bpf_prog_test_run_opts
• Runs concurrently on N CPUs



What is being measured

• Baseline – Cost of an empty BPF program
• Generic map

• bpf_map_lookup_elem
• bpf_map_update_elem
• bpf_map_delete_elem

• Helpers 
• bpf_get_prandom_u32
• bpf_ktime_get_ns
• bpf_tail_call

• LPM_TRIE and other map types



Special cases

• Longest Prefix Match
• Prefix population built from BGP data
• https://bgp.potaroo.net/as2.0/bgp-active.html
• Attempts to be representative of the internet routing tables

• Least Recently Used Hash-Table
• Random lookup/update/delete
• Rolling lookup/update

https://bgp.potaroo.net/as2.0/bgp-active.html


How measurements are taken

• Test divided into two phases
• Prep
• Execution

• Prep phase
• Populate maps (if needed)
• Runs on a single CPU core
• Not measured

• Execution
• Runs on specified set of CPUs
• Executes in parallel



How eBPF for Windows uses it

• Runs daily as part if CI/CD
• Allows tracking of changes of performance over time

• Results are published to Grafana
• Allows for easier viewing of results

• Public dashboard:
• Grafana (bpfperformancegrafana.azurewebsites.net)

• Comparison of Windows vs Linux performance
• Currently blocked on infrastructure
• Linux tests running as GitHub runners (vs self-hosted for Windows)
• Data shows too much variability
• Windows uses AOT vs Linux JIT

https://bpfperformancegrafana.azurewebsites.net/public-dashboards/3826972d0ff245158b6df21d5e6868a9?orgId=1


Lessons from Windows

• JIT vs AOT vs Interpret
• The ahead-of-time compilation is significantly faster
• C Compiler can generate more optimal code than JIT

• Lack of kernel integration
• Tracking per-thread state adds a high cost

• LPM as a hash-table (instead of a TRIE)
• Lookup perf is close
• Update significantly outperforms

• LRU
• Managing global consensus on key age is expensive
• Partitioned Generational LRU performs best


	Slide 1: BPF Performance testing
	Slide 2: Problem statement
	Slide 3: Runtime performance
	Slide 4: github.com/microsoft/bpf_performance
	Slide 5: What is being measured
	Slide 6: Special cases
	Slide 7: How measurements are taken
	Slide 8: How eBPF for Windows uses it
	Slide 9: Lessons from Windows

