
Generic multi-prog API, tcx links and meta device for BPF

Daniel Borkmann (Isovalent)

LSF/MM/BPF 2023

Generic multi-attach API and tcx BPF layer

Goal

3

- Having a generic reusable multi-program management API that is fit for long-term

- With popularity of BPF, more projects are using it in the wild

- Therefore more users competing in case of old-style single-program attach hooks

- Being able to express dependencies between programs

- Same “look and feel“ for different attachment points

Work which led up to here

4

- LPC’22 proposal: Cilium's BPF kernel datapath revamped

- Corresponding patch set on BPF mailing list:
https://lore.kernel.org/bpf/20221004231143.19190-1-daniel@iogearbox.net/

- tl;dr on patchset:

- Rework of tc BPF (fast-path & management API) with addition of links for tc BPF

- Attach/detach/query/link-create API via bpf() with tuple (prog/link fd + priority)

- Feedback was that i) to name the layer tcx and ii) priorities are hard to use due to collisions,
can we challenge status quo?

https://lpc.events/event/16/contributions/1353/
https://lore.kernel.org/bpf/20221004231143.19190-1-daniel@iogearbox.net/

Alternative directions to express dependencies

5

- systemd has Before=/After= dependency directives on unit files

- BPF could have something similar which would be ideal for management daemons

- Node-central management daemon may not be suitable for every environment
(e.g. K8s), but a new API should definitely make their lives easier

- Collected requirements from Meta and Cilium side with Andrii for initial design and we
converged with the following...

Requirements for generic multi-attach API

6

- Dependency directives (can also be combined):
- BPF_F_{BEFORE,AFTER} with relative_{fd,id} which can be {prog,link}

- BPF_F_ID flag as {fd,id} toggle
- BPF_F_LINK flag as {prog,link} toggle

- BPF_F_{FIRST,LAST}
- Support prog-based attach/detach and link API
- Internal revision counter and optionally being able to pass expected_revision

- Daemon can query current state with revision, and pass it along for attachment to
assert current state

- Common layer/API which deals which deals with all the details for state update
- Must be easy to integrate/reuse

Requirements for generic multi-attach API

7

bpf_mprog

tcx XDP cgroupsmeta …

attach points

Examples for generic multi-attach API

8

__u32 flags = 0, relative_obj = 0;
struct bpf_link *link;

[...]

link = bpf_program__attach_tcx(skel->progs.tc, ifindex, flags, relative_obj);
if (!link)

goto [...];

- Case: Simple append attach via link to tc BPF ingress of given ifindex

prog section: tcx/ingress

Examples for generic multi-attach API

9

__u32 flags = BPF_F_BEFORE | BPF_F_ID;
__u32 relative_obj = prog2_id;
struct bpf_link *link;

[...]

link = bpf_program__attach_tcx(skel->progs.tc, ifindex, flags, relative_obj);
if (!link)

goto [...];

- Case: Attach before prog2 id via link to tc BPF ingress of given ifindex

prog section: tcx/ingress

Examples for generic multi-attach API

10

__u32 flags = BPF_F_FIRST | BPF_F_BEFORE;
__u32 relative_obj = prog2_fd;
struct bpf_link *link;

[...]

link = bpf_program__attach_tcx(skel->progs.tc, ifindex, flags, relative_obj);
if (!link)

goto [...];

- Case: Attach before prog2 fd via link to tc BPF ingress of given ifindex and ensure it remains first

prog section: tcx/ingress

Examples for generic multi-attach API

11

__u32 flags = BPF_F_FIRST | BPF_F_BEFORE | BPF_F_ID | BPF_F_LINK;
__u32 relative_obj = link1_id;
struct bpf_link *link;

[...]

link = bpf_program__attach_tcx(skel->progs.tc, ifindex, flags, relative_obj);
if (!link)

goto [...];

- Case: Attach before link1 id via link to tc BPF ingress of given ifindex and ensure it remains first

prog section: tcx/ingress

Examples for generic multi-attach API

12

__u32 flags = BPF_F_AFTER | BPF_F_LINK;
__u32 relative_obj = link1_fd;
struct bpf_link *link;

[...]

link = bpf_program__attach_tcx(skel->progs.tc, ifindex, flags, relative_obj);
if (!link)

goto [...];

- Case: Attach after link1 fd via link to tc BPF ingress of given ifindex

prog section: tcx/ingress

Examples for generic multi-attach API

13

__u32 flags = BPF_F_FIRST | BPF_F_LAST;
__u32 relative_obj = 0;
struct bpf_link *link;

[...]

link = bpf_program__attach_tcx(skel->progs.tc, ifindex, flags, relative_obj);
if (!link)

goto [...];

- Case: Attach via link to tc BPF ingress of given ifindex and ensure it remains first and last

prog section: tcx/ingress

Examples for generic multi-attach API

14

__u32 flags = BPF_F_LAST | BPF_F_AFTER | BPF_F_ID;
__u32 relative_obj = prog1_id;
struct bpf_link *link;

[...]

link = bpf_program__attach_tcx(skel->progs.tc, ifindex, flags, relative_obj);
if (!link)

goto [...];

- Case: Attach after prog1 id via link to tc BPF ingress of given ifindex and ensure it remains last

prog section: tcx/ingress

Examples for generic multi-attach API

15

__u32 flags = BPF_F_LAST;
__u32 relative_obj = 0;
__u32 revision = 42;
struct bpf_link *link;

[...]

link = bpf_program__attach_tcx_revision(skel->progs.tc, ifindex, flags,
 relative_obj, revision);
if (!link)

goto [...];

- Case: Attach via link to tc BPF ingress of given ifindex and ensure it remains last, bail out if
internal revision is not 42

prog section: tcx/ingress

target_ifindex = 1
attach_type = bpf_tcx_{ingress,egress}
revision = 12
count = 4

prog_ids =

link_ids =

Generic multi-attach API: Query UAPI

16

1 5 2 3

Example:

8 1

BPF_F_
FIRST

BPF_F_
LAST

prog_attach_flags =

 link_attach_flags =

Generic multi-attach API: UAPI flag extensions

17

Generic multi-attach API: Attach / Detach UAPI

18

- target_ifindex etc already there, but given we cannot add common fields for link creation
at the end, we need to move these into link-specific section (here: .tcx):

Generic multi-attach API: Link Create UAPI

19

Generic multi-attach API: Internals

20

array for cache locality

a/b swap, so detach does not fail

minimal for better cacheline fit

tcx (aka “tc express” for BPF)

21

- tc BPF will be first consumer of this API
- See LPC’22 talk on the datapath revamp: Cilium's BPF kernel datapath revamped
- For tc link use case this needs to be outside of qdisc but as part of tc layer
- Cooperative with classic tc BPF for successive migration
- New future-proof tc fast-path aka tcx (“tc express”)
- Given cache-friendly array and minimal indirections it cuts cycles for entering into BPF

program in half

https://lpc.events/event/16/contributions/1353/

tcx (aka “tc express” for BPF)

22

tcx (aka “tc express” for BPF)

23

meta device for BPF

Goal

25

- Achieve same performance for application inside K8s Pod (netns) compared to
application residing inside host namespace

- Just because we move them into netns should not incur performance penalty, but it
currently still does

veth + stack vs BPF host routing case, results:

26Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO off, 8264 MTU
Receiver: taskset -a -c <core> tcp_mmap -s (non-zerocopy mode), Sender: taskset -a -c <core> tcp_mmap -H <dst host>

85 usec/MB101 usec/MB 92 usec/MB

* 8264 MTU for data page alignment in GRO

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c

veth + stack vs BPF host routing case, results:

27Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO off, 8264 MTU
Receiver: taskset -a -c <core> tcp_mmap -s (non-zerocopy mode), Sender: taskset -a -c <core> tcp_mmap -H <dst host>

85 usec/MB101 usec/MB 92 usec/MB

* 8264 MTU for data page alignment in GRO

Upper Stack:

skb_orphan due to nf TPROXY when
packet takes default stack
forwarding path.

Doing it too soon breaks TCP back
pressure in general, since socket can
evade SO_SNDBUF limits.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c

veth + stack vs BPF host routing case, results:

28Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO off, 8264 MTU
Receiver: taskset -a -c <core> tcp_mmap -s (non-zerocopy mode), Sender: taskset -a -c <core> tcp_mmap -H <dst host>

85 usec/MB101 usec/MB 92 usec/MB

* 8264 MTU for data page alignment in GRO

Cilium with BPF host routing:

Combining BPF fib lookup with
redirect_peer and redirect_neigh
helpers.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c

veth + stack vs BPF host routing case, results:

29Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO off, 8264 MTU
Receiver: taskset -a -c <core> tcp_mmap -s (non-zerocopy mode), Sender: taskset -a -c <core> tcp_mmap -H <dst host>

85 usec/MB101 usec/MB 92 usec/MB

* 8264 MTU for data page alignment in GRO

Can we get to this point?

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c

meta netdevices 1/2:

30

- “meta” for lack of better and short device type name :)
- Derives from the Greek μετά, encompassing a wide array of meanings such as "on top of",

"beyond". Given business logic is defined by BPF, this device can have many meanings.

- Core Idea:

- BPF shifted from tc into the device driver, so business logic is part of device xmit itself

- Performance: no per-CPU backlog when BPF redirects traffic from Pod to outside the node

- What about XDP support for meta virtual device?

- No, just use veth - side node on complexity: ¾ of veth code is just for XDP today

- For local Pod traffic batching right after native XDP@phys device with GRO’ed skb is preferred

- Program management: reuse of BPF multi-prog attach API (bpf_mprog)

meta netdevices 2/2:

31

- main/peer device: only main device can control BPF program management (typically leg in host)

- Later step: option to configure as single device as well (e.g. collect_md with
encapsulation/encryption via logic implemented in BPF)

- L3 mode (noarp) by default, L2 mode configurable (useful for testing IPv6 ND/ARP/LLDP/VRRP)

- Configurable traffic blackholing for main/peer dev if no BPF attached to avoid leaking traffic

- Maximum tc BPF compatibility to ease migration from tc+veth into meta device

32

(switch netns to host)

(directly redirect to phys dev, no backlog queue)

(BPF program: policy, fib lookup, redirect, etc)

veth vs meta: backlog queue

33

Pod with veth:

Pod with
meta:

Remains in
process context
all the way.

meta + BPF host routing case, results:

34Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO off, 8264 MTU
Receiver: taskset -a -c <core> tcp_mmap -s (non-zerocopy mode), Sender: taskset -a -c <core> tcp_mmap -H <dst host>

85 usec/MB

101 usec/MB

92 usec/MB

85 usec/MB

tput as high as host

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c

meta + BPF host routing case, results:

35Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO off
netperf -t TCP_RR -H <remote pod> -- -O MIN_LATENCY,P90_LATENCY,P99_LATENCY,THROUGHPUT

latency as low as host

meta inside Cilium, architecture:

Upper stack
(IP, netfilter,
routing, …)

Host
Pod

meta meta

36

(netns)

Building blocks in Cilium
for optimal Pod performance:

Bandwidth Manager
(fq/EDT/BBR) +
BPF Host Routing
(FIB lookup & redirect_peer/neigh) +
meta netdevices +
BIG TCP (IPv4/IPv6)

BIG TCP

BIG TCP + veth vs meta, results:

37Back to back: AMD Ryzen 9 3950X @ 3.5 GHz, 128G RAM @ 3.2 GHz, PCIe 4.0, ConnectX-6 Dx, mlx5 driver, striding mode, LRO off, 8264 MTU
netperf -t TCP_RR -H <remote pod> -- -O MIN_LATENCY,P90_LATENCY,P99_LATENCY,THROUGHPUT

latency as low as host

(side note: BIG TCP +
upper stack forwarding
currently broken)

meta netdevices, open questions:

38

- meta ships as module whereas BPF multi-prog attach API is built-in and has no dynamic
registration right now. Options:

- A: make meta Kconfig def_bool BPF_SYSCALL, bit similar to netfilter BPF

- B: Expose bpf_mprog API to modules, and for meta make callbacks registerable

- Ideally all logic can reside in the driver itself

- Potentially ndo device callbacks to delegate

https://lore.kernel.org/bpf/20230421170300.24115-2-fw@strlen.de/

Next steps:

39

- Generic multi-attach API & tcx (wip code on Github)
- Currently completing big test case batch to cover all corner cases
- After that ready to submit to the list (planned right after conf)
- Landing this is prereq for meta device as well

- meta netdevices (wip code on Github)
- Implementation with multi-prog management API
- BPF selftests, planned to land within May, max June

- XDP multi-attach support
- Planning to take on next for native XDP after all of above lands

https://github.com/cilium/linux/commits/pr/new-api-tcx2
https://github.com/cilium/linux/commits/pr/dev-meta

