Generic multi-prog API, tcx links and meta device for BPF

Daniel Borkmann (Isovalent)

Generic multi-attach APl and tcx BPF layer

Goal

- Having a generic reusable multi-program management API that is fit for long-term

- With popularity of BPF, more projects are using it in the wild

- Therefore more users competing in case of old-style single-program attach hooks
- Being able to express dependencies between programs
- Same “look and feel” for different attachment points

Work which led up to here

- LPC’22 proposal: Cilium's BPF kernel datapath revamped

- Corresponding patch set on BPF mailing list:
https://lore.kernel.org/bpf/20221004231143.19190-1-daniel@iogearbox.net/

- tl;dr on patchset:
- Rework of tc BPF (fast-path & management API) with addition of links for tc BPF
- Attach/detach/query/link-create API via bpf() with tuple (prog/link fd + priority)

- Feedback was that i) to name the layer tcx and i) priorities are hard to use due to collisions,
can we challenge status quo?

That's all theory. Your cover letter example proves that in
real life different service pick the same priority.

They simply don't know any better.

prio is an unnecessary magic that apps _have to pick,

so they just copy-paste and everyone ends up using the same.

https://lpc.events/event/16/contributions/1353/
https://lore.kernel.org/bpf/20221004231143.19190-1-daniel@iogearbox.net/

Alternative directions to express dependencies

- systemd has Before=/After= dependency directives on unit files
- BPF could have something similar which would be ideal for management daemons

- Node-central management daemon may not be suitable for every environment
(e.g. K8s), but a new API should definitely make their lives easier

- Collected requirements from Meta and Cilium side with Andrii for initial design and we
converged with the following...

Requirements for generic multi-attach API

- Dependency directives (can also be combined):
- BPF_F _{BEFORE,AFTER} with relative_{fd,id} which can be {prog,link}
- BPF_F_ID flag as {fd,id} toggle
- BPF_F_LINK flag as {prog,link} toggle
- BPF_F_{FIRST,LAST}
- Support prog-based attach/detach and link API
- Internal revision counter and optionally being able to pass expected_revision
- Daemon can query current state with revision, and pass it along for attachment to
assert current state
- Common layer/API which deals which deals with all the details for state update
- Must be easy to integrate/reuse

Requirements for generic multi-attach API

tcx

XDP

meta

cgroups

bpf_mprog

&

Examples for generic multi-attach API

- Case: Simple append attach via link to tc BPF ingress of given ifindex

__u32 flags = 0, relative_obj = 0;
struct bpf_link *1link;

[...]

link = bpf_program__attach_tcx(skel->progs.tc, ifindex, flags, relative_obj);
if (!link)

goto [...]; \\

prog section: tcx/ingress

Examples for generic multi-attach API

- Case: Attach before prog?2 id via link to tc BPF ingress of given ifindex

__u32 flags = BPF_F_BEFORE | BPF_F_ID;
__u32 relative_obj = prog2_id;
struct bpf_link *1link;

[...]

link = bpf_program__attach_tcx(skel->progs.tc, ifindex, flags, relative_obj);
if (!link)

goto [...]; \\

prog section: tcx/ingress

Examples for generic multi-attach API

Case: Attach before prog2 fd via link to tc BPF ingress of given ifindex and ensure it remains first

__u32 flags = BPF_F_FIRST | BPF_F_BEFORE;

__u32 relative_obj = prog2_fd;
struct bpf_link *1link;

[...]

link = bpf_program__attach_tcx(skel->progs.tc, ifindex, flags, relative_obj);

if (!1link)
goto [...];

\

prog section: tcx/ingress

10

Examples for generic multi-attach API

- Case: Attach before link1 id via link to tc BPF ingress of given ifindex and ensure it remains first

__u32 flags = BPF_F_FIRST | BPF_F_BEFORE | BPF_F_ID | BPF_F_LINK;
__u32 relative_obj = link1_id;
struct bpf_link *1link;

[...]

link = bpf_program__attach_tcx(skel->progs.tc, ifindex, flags, relative_obj);
if (!link)

goto [...]; \\

prog section: tcx/ingress

11

Examples for generic multi-attach API

Case: Attach after link1 fd via link to tc BPF ingress of given ifindex

__u32 flags = BPF_F_AFTER | BPF_F_LINK;
__u32 relative_obj = linkl_ fd;
struct bpf_link *1link;

[...]

link = bpf_program__attach_tcx(skel->progs.tc, ifindex, flags, relative_obj);

if (!1link)
goto [...];

\

prog section: tcx/ingress

12

Examples for generic multi-attach API

- Case: Attach via link to tc BPF ingress of given ifindex and ensure it remains first and last

__u32 flags = BPF_F_FIRST | BPF_F_LAST;
__u32 relative_obj = 0;
struct bpf_link *1link;

[...]

link = bpf_program__attach_tcx(skel->progs.tc, ifindex, flags, relative_obj);
if (!link)

goto [...]; \\

prog section: tcx/ingress

Examples for generic multi-attach API

- Case: Attach after progl id via link to tc BPF ingress of given ifindex and ensure it remains last

__u32 flags = BPF_F_LAST | BPF_F_AFTER | BPF_F_ID;
__u32 relative_obj = progl_id;
struct bpf_link *1link;

[...]

link = bpf_program__attach_tcx(skel->progs.tc, ifindex, flags, relative_obj);
if (!link)

goto [...]; \\

prog section: tcx/ingress

Examples for generic multi-attach API

- Case: Attach via link to tc BPF ingress of given ifindex and ensure it remains last, bail out if
internal revision is not 42

__u32 flags = BPF_F_LAST;
__u32 relative_obj = 0;
__Uu32 revision = 42;
struct bpf_link *1link;

prog section: tcx/ingress
[...] //

link = bpf_program__attach_tcx_revision(skel->progs.tc, ifindex, flags,
relative_obj, revision);
if (!link)
goto [...];

15

Generic multi-attach API: Query UAPI

struct { /% anonymous struct used by BPF_PROG_QUERY command x/

+ + + +

W, L

_u32
union {
_u32
_u32
HH
_u32
_u32
_u32
__aligned_u64
_u32
union {
_u32
_u32
ks
u32

target_fd;

target_fd;
target_ifindex; /x target ifindex x/

attach_type;
query_flags;
attach_flags;
prog_ids;
prog_cnt;

prog_cnt;
count;

revision;

/* output: per-program attach_flags.

* not allowed to be set during effective query.

*/
__aligned_u64
__aligned_u64
__aligned_u64

} query;

prog_attach_flags;
link_ids;
link_attach_flags;

/* container object to query *x/

/* target object to query or ...

Example:

%/ target_ifindex=1

attach_type = bpf_tcx_{ingress,egress}

revision =12

count=4
prog_ids = 1 3
link_ids = 1
prog_attach_flags= | T&r
link_attach_flags = e

16

Generic multi-attach API: UAPI flag extensions

#define BPF_F_ALLOW_OVERRIDE (1U << 0)

#define BPF_F_ALLOW_MULTI (1l << 1)
+ /* Generic attachment flags. x/
#define BPF_F_REPLACE (1l << 2)
+ #define BPF_F_BEFORE (1U << 3)
+ #define BPF_F_AFTER (1U << 4)
+ #define BPF_F_FIRST (1U << 5)
+ #define BPF_F_LAST (1U << 6)
+ #define BPF_F_ID (1U << 7)
+ #define BPF_F_LINK BPF_F_LINK /*x 1 << 13 %/

Generic multi-attach API: Attach / Detach UAPI

struct { /% anonymous struct used by BPF_PROG_ATTACH/DETACH commands */

+ + + + +

+ + + + + +

union {
_u32
_u32
_u32

bt

_u32
_u32
union {
_u32
_u32

_u32
_u32
_u32
_u32

_u32

target_fd; /*
attach_bpf_fd; /x

target_fd; /*
target_ifindex; /*

attach_bpf_fd;
attach_type;
attach_flags;
replace_bpf_fd; /*

%/

relative_fd;
relative_id;
replace_bpf_fd;

expected_revision;

container object to attach to */
eBPF program to attach x/

target object to attach to or ... x/
target ifindex x/

previously attached eBPF
program to replace if
BPF_F_REPLACE is used

18

Generic multi-attach API: Link Create UAPI

- target_ifindex etc already there, but given we cannot add common fields for link creation
at the end, we need to move these into link-specific section (here: .tcx):

+ struct {

+ union {

& __u32 relative_fd;

+ _u32 relative_id;

. 3

+ _u32 expected_revision;
+ } tex;

19

Generic multi-attach API: Internals

struct bpf_prog_item {
struct bpf_prog *prog;
u32 flags;
u32 id;

};

struct bpf_mprog_entry {

struct bpf_prog_item

struct bpf_mprog_entry_pair
IH

struct bpf_mprog_entry_pair {
struct bpf_mprog_entry
struct bpf_mprog_entry
struct rcu_head
struct bpf_prog *
atomic_t

/ minimal for better cacheline fit

array for cache locality

items [BPF_MPROG_MAX] cacheline_aligned;
*parent;

a; / a/b swap, so detach does not fail

revision;

20

tcx (aka “tc express” for BPF)

- tc BPF will be first consumer of this API
- See LPC’22 talk on the datapath revamp: Cilium's BPF kernel datapath revamped
- For tc link use case this needs to be outside of qdisc but as part of tc layer
- Cooperative with classic tc BPF for successive migration
- New future-proof tc fast-path aka tcx (“tc express”)
- Given cache-friendly array and minimal indirections it cuts cycles for entering into BPF
program in half

21

https://lpc.events/event/16/contributions/1353/

tcx (aka “tc express” for BPF)

static __always_inline enum tc_action_base
tcx_run(const struct bpf_mprog_entry xentry, struct sk_buff xskb,
const bool needs_mac)

const struct bpf_prog_item xitem;
const struct bpf_prog *xprog;
int ret = TC_NEXT;

if (needs_mac)
__skb_push(skb, skb->mac_1len);
item = &entry->items[0];
while ((prog = READ_ONCE(item—>prog))) {
bpf_compute_data_pointers(skb);
ret = bpf_prog_run(prog, skb);
if (ret !'= TC_NEXT)
break;
item++;
}
if (needs_mac)
__skb_pull(skb, skb->mac_len);
return tcx_action_code(skb, ret);

22

tcx (aka “tc express” for BPF)

static __always_inline struct sk_buff
sch_handle_ingress(struct sk_buff xskb, struct packet_type xxpt_prev, int xret,
struct net_device xorig_dev, bool xanother)

struct bpf_mprog_entry xentry = rcu_dereference_bh(skb->dev->tcx_ingress);
int sch_ret;

if (lentry)
return skb;

if (xpt_prev) {
xret = deliver_skb(skb, *pt_prev, orig_dev);
*pt_prev = NULL;

qdisc_skb_cb(skb)->pkt_len = skb->len;
tcx_set_ingress(skb, true);

if (static_branch_unlikely(&tcx_needed_key)) {
sch_ret = tcx_run(entry, skb, true);
if (sch_ret !'= TC_ACT_UNSPEC)
goto ingress_verdict;
}
sch_ret = tc_run(container_of(entry->parent, struct tcx_entry, pair), skb);
ingress_verdict:
switch (sch_ret) {
case TC_ACT_REDIRECT:
/* skb_mac_header check was done by BPF, so we can safely
* push the L2 header back before redirecting to another

meta device for BPF

Goal

- Achieve same performance for application inside K8s Pod (netns) compared to
application residing inside host namespace

- Just because we move them into netns should not incur performance penalty, but it
currently still does

25

veth + stack vs BPF host routing case, results:

TCP stream single flow Pod to Pod over wire, 8k MTU (higher is better)

[veth + upper stack forwarding [veth + BPF host routing [host (baseline/best case)

100,000 -
75,000 -
50,000 -

25,000

Mbps

26

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c

veth + stack vs BPF host routing case, results:

TCP stream single flow Pod to Pod over wire, 8k MTU (higher is better)

[veth + upper stack forwarding [veth + BPF host routing [host (baseline/best case)

100,000

Upper Stack:

skb_orphan due to nf TPROXY when
packet takes default stack
forwarding path.

Doing it too soon breaks TCP back
pressure in general, since socket can
evade SO_SNDBUF limits.

Mbps

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c

veth + stack vs BPF host routing case, results:

TCP stream single flow Pod to Pod over wire, 8k MTU (higher is better)

[veth + upper stack forwarding [veth + BPF host routing [host (baseline/best case)
100,000

Cilium with BPF host routing:

Combining BPF fib lookup with
redirect_peer and redirect_neigh
helpers.

25,000

Mbps

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c

veth + stack vs BPF host routing case, results:

TCP stream single flow Pod to Pod over wire, 8k MTU (higher is better)

100,000

75,000

50,000

25,000

[veth + upper stack forwarding [veth + BPF host routing [host (baseline/best case)

<+

Can we get to this point?

Mbps

29

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c

meta netdevices 1/2:

- “meta” for lack of better and short device type name :)
- Derives from the Greek peT@, encompassing a wide array of meanings such as "on top of",
"beyond". Given business logic is defined by BPF, this device can have many meanings.

- Core ldea:
- BPF shifted from tc into the device driver, so business logic is part of device xmit itself
- Performance: no per-CPU backlog when BPF redirects traffic from Pod to outside the node

- What about XDP support for meta virtual device?
- No, just use veth - side node on complexity: % of veth code is just for XDP today
- For local Pod traffic batching right after native XDP@phys device with GRO’ed skb is preferred

- Program management: reuse of BPF multi-prog attach API (bpf_mprog)
30

meta netdevices 2/2:

- main/peer device: only main device can control BPF program management (typically leg in host)

- Later step: option to configure as single device as well (e.g. collect_md with
encapsulation/encryption via logic implemented in BPF)

- L3 mode (noarp) by default, L2 mode configurable (useful for testing IPv6 ND/ARP/LLDP/VRRP)
- Configurable traffic blackholing for main/peer dev if no BPF attached to avoid leaking traffic
- Maximum tc BPF compatibility to ease migration from tc+veth into meta device

31

static netdev_tx_t meta_xmit(struct sk_buff xskb, struct net_device *dev)

{

drop:

struct meta xmeta = netdev_priv(dev);
struct net_device xpeer;
struct bpf_prog *prog;

rcu_read_lock();

peer = rcu_dereference(meta->peer);

if (unlikely(!peer || skb_orphan_frags(skb, GFP_ATOMIC)))
goto drop;

meta_scrub_minimum(skb);

(switch netns to host)

skb->dev = peer; -~
prog = rcu_dereference(meta->prog);
if (unlikely(!prog))
goto drop;
switch (bpf_prog_run(prog, skb)) { <€

case META_OKAY:
skb->protocol = eth_type_trans(skb, skb->dev);
skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
_ netif_rx(skb);
break;

case META_REDIRECT:

A

(BPF program: policy, fib lookup, redirect, etc)

skb_do_redirect(skb);
break;

case META_DROP:

default:

kfree_skb(skb);
break;
}
rcu_read_unlock();
return NETDEV_TX_OK;

(directly redirect to phys dev, no backlog queue)

32

veth vs meta: backlog queue

Pod with veth:

inet_sendmsg

pIck_nex_t__ta.. sock_sendmsg
__schedule

I
| smpboot_thread_fn
k d

ksoftirqd/0

Pod with
meta:

' skb_do_redirect

| meta_xmit |
| L
dev_queue_xmit] Remains in

<4— process context
all the way.

%l

o =
=

33

meta + BPF host routing case, results:

TCP stream single flow Pod to Pod over wire, 8k MTU (higher is better)

[veth + upper stack forwarding [veth + BPF host routing [meta + BPF host routing
" host (baseline/best case)

100,000
tput as high as host
75,000

50,000

25,000

Mbps

34

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c

meta + BPF host routing case, results: a’

Latency in usec Pod to Pod over wire (lower is better)

[veth + BPF host routing [meta + BPF host routing | host (baseline/best case)
25

latency as low as host

20 -

10 -

MIN P90 P99

35

meta inside Cilium

Building blocks in Cilium
for optimal Pod performance:

Bandwidth Manager
(fq/EDT/BBR) +

BPF Host Routing ;
(FIB lookup & redirect_peer/neigh) + :
meta netdevices + :

, architecture:

BIG TCP (IPv4/IPv6)

met? meta

o (ST [HempFleny)

36

BIG TCP + veth vs meta, results:

Latency in usec Pod to Pod over wire (lower is better)
[veth + BPF host routing [meta + BPF host routing | host (baseline/best case)
100

75
latency as low as host

50

(side note: BIG TCP +
upper stack forwarding
currently broken)

MIN P50 P90 P99

37

meta netdevices, open questions:

- meta ships as module whereas BPF multi-prog attach APl is built-in and has no dynamic
registration right now. Options:

- A: make meta Kconfig def _bool BPF_SYSCALL, bit similar to netfilter BPF
- B: Expose bpf_mprog API to modules, and for meta make callbacks registerable

- ldeally all logic can reside in the driver itself
- Potentially ndo device callbacks to delegate

38

https://lore.kernel.org/bpf/20230421170300.24115-2-fw@strlen.de/

Next steps:

- Generic multi-attach API & tcx (wip code on Github)
- Currently completing big test case batch to cover all corner cases
- After that ready to submit to the list (planned right after conf)
- Landing this is prereq for meta device as well

- meta netdevices (wip code on Github)
- Implementation with multi-prog management API
- BPF selftests, planned to land within May, max June

- XDP multi-attach support
- Planning to take on next for native XDP after all of above lands

39

https://github.com/cilium/linux/commits/pr/new-api-tcx2
https://github.com/cilium/linux/commits/pr/dev-meta

