
XDP Metadata
sdf@google.com

May 2023

mailto:sdf@google.com


XDP introduction

RX
TX

netdev driver RX

core TCP/IP stack

recvmsg()

BPF@XDP

AF_XDP
RX/TX

netdev driver TX

core TCP/IP stack

sendmsg()

BPF?

TX complete
BPF?



XDP metadata on RX

● NIC can parse and export a bunch of per-packet metadata
● Avoids kernel re-calculating the same info
● Examples

○ RX Flow Hash
○ RX Checksum value (CHECKSUM_COMPLETE) or status (CHECKSUM_UNNECESSARY)
○ RX Hardware timestamp



XDP metadata on TX

● Kernel can signal a bunch of things at TX for NIC to offload
● Avoids kernel wasting CPU on moving the data/etc
● Examples

○ Offload L4 checksum (i.e., ask nic to calculate checksum [from...to] and write at given offset)
○ GSO - split single big packet into MTU-sized chunks
○ Request HW TX timestamp
○ Tunneling/VLAN offloads (ask NIC to slap extra headers)
○ Pacing (SO_TXTIME / EDT)
○ Toke's XDP queueing

■ https://lwn.net/Articles/901046/
■ out of scope here, but something to keep in mind

https://lwn.net/Articles/901046/


Why do we need it?

● skb feature parity
● core tcp/ip stack already using all these offloads
● we need to expose them to XDP / AF_XDP context to be more CPU efficient

○ or access things that are otherwise inaccessible (like HW timestamps)



Where we are?

● RX side is implemented (the framework + small amount of kfuncs)
● Each metadata is exported via separate kfunc

○ bpf_xdp_metadata_rx_hash
○ bpf_xdp_metadata_rx_timestamp

● netdev-bound programs (to avoid netdev->kfunc indirect calls)
○ resolve kfunc at load time to direct calls
○ make sure this program can be attached only to "bound" netdev
○ make sure progs become orphaned (i.e. unusable) when netdev goes away



What's missing?

● more RX helpers (checksum is the obvious one)
○ I'm assuming whoever needs it can send out the patches

● TX part is completely missing



What are the use cases?

● From our POW, we just need:
○ RX HW timestamp (done)
○ TX HW timestamp

■ which means we need TX completion and access to TX completion descriptor
● But it doesn't seem fair to solve only completion part
● Having a TX metadata framework seems like a good way to scope it



What do we really need?

● Two hooks
○ XDP for every egress packet
○ XDP for every egress packet completion
○ is it too much?

● Access to real TX descriptors
○ from the kfucs

● Access to AF_XDP umem chunk?
○ We might want to put tx-timestamp into AF_XDP umem chunk for userspace consumption

● per-device kfuncs to get/set the metadata



Alternatives considered

● Something AF_XDP specific?
● Full-blown XDP@Egress?
● HID-BPF like hooks in the driver's egress path?

○ this is the one I've mostly settled on
○ device-bound tracing programs with TX metadata kfuncs



Proposal

● syscall program to attach to new hooks
● tx/tx_completion metadata kfuncs
● netdev-bound tracing programs (to resolve metadata kfuncs)
● AF_XDP can also use these for the offloads in the future, for example:

○ bpf_xdp_metadata_tx_l4_checksum_offload(l4_offset, TCP);



Example

● SEC("syscall")
○ bpf_xdp_attach_egress_prog(ctx->ifindex, ctx->egress_prog_fd);
○ bpf_xdp_attach_egress_compl_prog(ctx->ifindex, ctx->egress_compl_prog_fd);

● SEC("fmod_ret/xdp_egress")
○ bpf_xdp_metadata_tx_request_timestamp(ctx);

● SEC("fmod_ret/xdp_egress_compl")
○ bpf_xdp_metadata_tx_timestamp(ctx, &sample->timestamp);



Pros & Cons

● Pros
○ easy to experiment
○ not a UAPI

● Cons
○ two new hooks
○ driver specific

■ same as XDP though?
○ XDP-like, but not XDP

■ no access to AF_XDP metadata
■ no access to existing XDP helpers


