
Proprietary + Confidential

Hao Luo, Chris Li May 2023

BPF Use Case: Debugging
Kernel Performance

Proprietary + Confidential

Introduction

Background

Root Causing

Swap Fault Latency Analysis

Q&A

01

02

03

04

05

Agenda

Proprietary + Confidential

Hao Luo: Share my experience of using BPF to root cause a kernel performance
regression that happened in our production environment. Also raise some interesting
questions.

Chris Li: Share our BPF tool that monitors swap faults and eliminated long tails of
swap fault that happened in production.

Introduction

Proprietary + Confidential

Background

On 4.15 kernel, the p99 latency of writing cpuset.cpus is 7.5ms.

Proprietary + Confidential

Background

On 5.10 kernel, the p99 latency of writing cpuset.cpus becomes around 86ms (11x longer tail latency)

Proprietary + Confidential

Root Causing

BPF tool 1:

Let’s check whether there is lock contention.

Methodology:
- Measure the time threads spent in the locking slow paths

- Using a set of tracepoints in lock’s slow paths (available since 5.19)
- Profiling scoped within cpuset_write_resmask()

- Export the sampled time via BPF ringbuf and estimate quantiles
- Alternative: BPF t-digest

- Compare the results on 5.10 against 4.15

Result:
- 5.10 does have much higher lock contention (under our production workloads)

https://lore.kernel.org/lkml/CAM9d7cjSPB+YfUBKHC_b3ux8z5r0QOr_B=nbPX62vygOogiVYQ@mail.gmail.com/T/
https://github.com/tdunning/t-digest

Proprietary + Confidential

V4.15 V5.10

P25 0 2

P50 1 3

P75 1 10

P90 5 14607

P95 180 31886

P99 2589 111186

Lock Contention Latency (unit: us)

Proprietary + Confidential

BPF tool 2:

Let’s check what lock caused the contention.

Methodology 1:
- Perf lock contention can identify a few commonly used locks
- But not all locks can be identified, such as the locks in super_block (a super_block iterator may help).

Methodology 2:
- Attaches a program at the entry of contention, installs a timer of expiry time set to the tail latency (32ms

as an example).
- When the timer fires, the callback records the lock’s state (e.g. lock owner, lock address, etc)

- Not all types of locks records owners unfortunately, but owner is a useful information.
Result:

- The lock of heavy contention is cpuset_rwsem

Root Causing

Proprietary + Confidential

Root Causing

BPF tool 3:

Let’s check cpuset_rwsem’s critical section.

Methodology:
- Check if there is significant increase of the critical sections of cpuset_rwsem.
- Attach programs at the acquisition and release of cpuset_rwsem and measure

its time
- There are several non-overlaping functions that takes cpuset_rwsem.

- Need to scope the profiling under them (I implemented a library that
limits profiling scope)

- Need to separate their profiled results.

Result:
- Cpuset_write_resmask has very long critical section

Proprietary + Confidential

Root Causing

Examining the code path of cpuset_write_resmask(), identified the following callchain:

-> cpuset_write_resmask

 -> update_cpumask

 -> update_cpumasks_hier

 -> rebuild_sched_domains_locked

 -> partition_and_rebuild_sched_domains

 -> rebuild_root_domains

Rebuild_root_domains may be called within cpuset_write_resmask and it iterates all
the cpuset cgroups and the tasks within the cgroup, which has very high overhead.

Fix: the iteration in rebuild_root_domains() is relevant to Deadline task accounting. We
don’t use DL tasks in our production, so we disabled it and report the problem to
upstream.

Proprietary + Confidential

With the fix, the p90 latency of writing cpuset.cpus is now around 17ms (much lower than before)
Note that there are still tails positioned at [17ms, 194ms].

Proprietary + Confidential

Further Optimization

We further identified that the use of cpuset_rwsem has high latency on locking for
write (because of calling synchronize_rcu. Can we detect that using BPF?)

Switching cpuset_rwsem back to mutex eliminates those tails.

Proprietary + Confidential

Swap Fault Latency Analysis

Zswap typically go through 8 function steps

read_swap_cache alloc_page_mpol lookup_zswap_entry zpool_map_hand
l decompress zpool_unmap free_zswap_entry free_swap_slot

t1 t2 t3 t4 t5 t6 t7 t8 t9

handle_mm_fault

zswap_frontswap_load

Proprietary + Confidential

Proprietary + Confidential

Proprietary + Confidential

Q & A

