
Sched Ext
The extensible sched_class

David Vernet
Kernel engineer

Agenda

01 What is sched_ext?

02 Common objections

03 Interesting Changes / Additions

01 What is sched_ext?

sched_ext enables scheduling policies to be
implemented in BPF programs
- New sched_class, at a lower priority than CFS
- Enables scheduling policies to be written in BPF programs
- No ABI stability restrictions – purely a kernel <-> kernel interface

01 What is sched_ext?

Why are we doing this?
- Rapid experimentation

- Simple and intuitive API for scheduling policies
- Does not require knowledge of core scheduler internals

- Safe, cannot crash the host
- Protection afforded by BPF verifier
- Watchdog boots sched_ext scheduler if a runnable task isn’t scheduled within some timeout
- New sysrq key for booting sched_ext scheduler through console

- See what works, then implement features in CFS
- Bespoke schedulers that are optimized for specific services

- Used in Meta production to optimize main FB web service by 1.25 - 3% RPS, 3-6% P99 latency
compared to vanilla (but finely tuned) CFS, which results in O($millions) in capacity savings
- Going to try and generalize, eventually add to CFS if anything is sufficiently applicable

- Quick rollouts of new policies (e.g. for core sched)
- Temporary workaround for CPU bugs until full mitigation is rolled out

- Moving policy decisions and complexity into user space
- Avoids workarounds like custom threading implementations and other flavors of kernel bypass

01 What is sched_ext?

Implementing scheduling policies
- BPF program must implement a set of callbacks

- Task wakeup (similar to select_task_rq())
- Task enqueue/dequeue
- Task state change (runnable, running, stopping, quiescent)
- CPU needs task(s) (balance)
- Cgroup integration
- …

- Also provides fields which globally configure scheduler
- Max # of tasks that can be dispatched
- Timeout threshold in ms (can’t exceed 30s)
- Name of scheduler

01 What is sched_ext?

/* Return CPU that task should be migrated to on wakeup path. */
s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);

/* Enqueue runnable task in the BPF scheduler. May dispatch directly to CPU. */
void (*enqueue)(struct task_struct *p, u64 enq_flags);

/* Complement to the above callback. */
void (*dequeue)(struct task_struct *p, u64 deq_flags);
...

/* Maximum time that task may be runnable before being run. Cannot exceed 30s. */
u32 timeout_ms;

/* BPF scheduler’s name. Must be a valid name or the program will not load. */
char name[SCX_OPS_NAME_LEN];

01 What is sched_ext?

From https://github.com/sched-ext/sched_ext/blob/sched_ext-v3/include/linux/sched/ext.h

https://github.com/sched-ext/sched_ext/blob/sched_ext-v3/include/linux/sched/ext.h

const volatile bool switch_partial; /* Can be set by user space before loading the program. */

s32 BPF_STRUCT_OPS(simple_init)
{
 if (!switch_partial) /* If set, tasks will individually be configured to use the SCHED_EXT class. */
 scx_bpf_switch_all(); /* Switch all CFS tasks to use sched_ext. */
 return 0;
}

void BPF_STRUCT_OPS(simple_enqueue, struct task_struct *p, u64 enq_flags)
{
 if (enq_flags & SCX_ENQ_LOCAL) /* SCX_ENQ_LOCAL could be set if e.g. the current CPU has no other tasks to run. */
 scx_bpf_dispatch(p, SCX_DSQ_LOCAL, enq_flags); /* Dispatch task to the head of the current CPU’s local FIFO. */
 else
 scx_bpf_dispatch(p, SCX_DSQ_GLOBAL, enq_flags); /* Dispatch task to the global FIFO, it will be consumed

 * automatically by ext. */
}

void BPF_STRUCT_OPS(simple_exit, struct scx_exit_info *ei)
{
 bpf_printk(“Exited”); /* Can do more complicated things here like setting flags in user space, etc. */
}

SEC(".struct_ops")
struct sched_ext_ops simple_ops = {
 .enqueue = (void *)simple_enqueue,
 .init = (void *)simple_init,
 .exit = (void *)simple_exit,
 .name = "simple",
};

Dispatch Queues (DSQs) are basic building
block of scheduler policies

- Abstraction layer between BPF and main kernel for managing queues of tasks
- M:N relationship between DSQs and runqueues.

- Gives schedulers flexibility
- Per-domain (NUMA node, CCX, etc) DSQ?
- Global DSQ?
- Per-cgroup DSQ?

- The data structure / abstraction layer for managing tasks between main kernel <-> BPF scheduler (more on
next slide). Not the only data structure for managing tasks in BPF
- BPF lists
- BPF rbtrees
- BPF maps such as BPF_MAP_TYPE_HASHAMP, BPF_MAP_TYPE_QUEUE

01 What is sched_ext?

DSQ operations: dispatch and consume
- DSQs provide two main operations (other than create / destroy):
- Dispatch: Placing a task into a DSQ

- Not the same as picking the task to run on a CPU [0]
- Can be done in one of two callbacks:

- ops.enqueue(): Callback invoked when task is being enqueued in the BPF scheduler. If task is not
dispatched to a DSQ, it is assumed to be enqueued in the BPF scheduler, and will be dispatched in
the ops.dispatch() callback. Failing to run the task before some timeout threshold occurs will
cause the scheduler to be unloaded, and revert the system back to CFS.

- ops.dispatch(): Callback invoked when a core is going to go idle if a task is not found. Dispatching
from ops.dispatch() would commonly happen if the task is enqueued in the BPF program directly
(e.g. by being stored in a BPF rbtree graph-type data structure).

- Consume: “Consuming” a task from a DSQ to run on the calling CPU
- More conceptually similar to pick_next_task()
- Typically done in ops.dispatch() when a core is will go idle if no task is found

[0]: Tasks may be “directly dispatched” to the per-CPU local DSQ, skipping the dispatch() -> consume() flow

01 What is sched_ext?

01 What is sched_ext?

02 Common objections

There are a set of common objections I keep
hearing
- Most people agree that the feature is useful. Objections are not about design or

functionality
- I don’t agree with the rationale of many of these objections, but we need to address them in

a consistent and explicit manner
- These are becoming especially pervasive as BPF transitions to “new” model described by

Alexei

02 Common objections

Rationale

- Schedulers will stay out-of-tree
- No incentive for vendors, contributors,

etc to contribute
- We’ll have ton of non-GPL schedulers

being loaded

02 Common objections

How to address

- Clarify guarantees for upstreamed vs.
not upstreamed schedulers
- Guaranteed to prevent breakages

from changing struct sched_ext_ops
- Performance regressions?

- We need to be very explicit about
expectations for any upstreamed progs,
just like we are for kfuncs
- This is not sched_ext-specific, just

happens to be in the spotlight

“sched_ext will kill CFS contributions”

Rationale

- BPF connects user space to the
scheduler

- Linus has said people haven’t yet
complained about breakages, but they
could

- BPF prog != module

02 Common objections

How to address

- Be very explicit about stability
guarantees for all struct_ops BPF progs
- Similar to kfuncs

- Need to develop a well-defined, well
codified framework for upstreamed BPF
progs

“sched_ext will force UAPI onto the scheduler”

Rationale

- Distros will have to support whatever
out-of-tree BPF schedulers that users /
vendors implement

- Out-of-tree schedulers should taint the
kernel because of how core the program
is

02 Common objections

How to address

- Draw comparisons to other BPF
features like XDP

- Write up a FAQ about this? Loop distro
maintainers we have good relationships
to help provide context?

“sched_ext will be support nightmare for
distros”

03 Interesting Changes / Additions

03 Interesting Changes / Additions

bpf_cpumask
- Goal: natural interaction w/ cpumask objects from BPF programs

- Must be able to create, not just inspect or modify existing cpumasks

/* Definition and many more kfuncs in kernel/bpf/cpumask.c */

struct bpf_cpumask {

 cpumask_t cpumask;

 struct rcu_head rcu;

 refcount_t usage;

};

struct bpf_cpumask *bpf_cpumask_create(void) __ksym;

struct bpf_cpumask *bpf_cpumask_acquire(struct bpf_cpumask *cpumask) __ksym;

void bpf_cpumask_release(struct bpf_cpumask *cpumask) __ksym;

/* Can interact with plain cpumasks, not just bpf_cpumask */

bool bpf_cpumask_full(const struct cpumask *cpumask) __ksym;

u32 bpf_cpumask_any(const struct cpumask *cpumask) __ksym;

From kernel/bpf/cpumask.c

03 Interesting Changes / Additions

Use RCU context instead of kptr_get
- RCU-safe types don’t need explicit kptr_get, we’re in RCU CS so can acquire and use

- Applies to task_struct, cgroup, cpumask
- Modulo sleepable progs, where explicit bpf_rcu_read_{lock, unlock} is needed

/* Before */

struct cgroup *ancestor;

kptr = bpf_cgroup_kptr_get(&v->cgrp);

if (!kptr) { /* snip */ }

ancestor = bpf_cgroup_ancestor(kptr, 1);

bpf_cgroup_release(kptr);

if (ancestor) {

...

}

/* After */

struct cgroup *cgrp, *ancestor;

bpf_rcu_read_lock();

cgrp = v->cgrp;

if (!cgrp) { /* snip */ }

ancestor = bpf_cgroup_ancestor(cgrp, 1);

bpf_rcu_read_unlock();

if (ancestor) {

...

}

03 Interesting Changes / Additions

scx_example_flatcg: rbtree + local kptr stashing
- Implements hierarchical weight-based cgroup CPU control by flattening the cgroup hierarchy into a single

layer

struct cgv_node {

struct bpf_rb_node rb_node;

__u64 cvtime;

__u64 cgid;

};

private(CGV_TREE) struct bpf_spin_lock cgv_tree_lock;

private(CGV_TREE) struct bpf_rb_root cgv_tree __contains(cgv_node, rb_node);

struct {

__uint(type, BPF_MAP_TYPE_HASH);

__uint(max_entries, 16384);

__type(key, __u64);

__type(value, struct cgv_node_stash);

} cgv_node_stash SEC(".maps");

From https://github.com/sched-ext/sched_ext/blob/sched_ext-v3/tools/sched_ext/scx_example_flatcg.bpf.c

struct cgv_node_stash {

struct cgv_node __kptr *node;

};

https://github.com/sched-ext/sched_ext/blob/sched_ext-v3/tools/sched_ext/scx_example_flatcg.bpf.c

03 Interesting Changes / Additions

scx_example_flatcg: rbtree + local kptr stashing
- Stash in map on cgroup_init, unstash and add to rbtree on enqueue

/* fcg_cgroup_init */

struct cgv_node *cgv_node;

struct cgv_node_stash *stash;

stash = bpf_map_lookup_elem(&cgv_node_stash, &cgid);

if (!stash) { /* snip */ }

cgv_node = bpf_obj_new(struct cgv_node);

if (!cgv_node) { /* snip */ }

cgv_node->cgid = cgid;

cgv_node->cvtime = cvtime_now;

cgv_node = bpf_kptr_xchg(&stash->node, cgv_node);

From https://github.com/sched-ext/sched_ext/blob/sched_ext-v3/tools/sched_ext/scx_example_flatcg.bpf.c

https://github.com/sched-ext/sched_ext/blob/sched_ext-v3/tools/sched_ext/scx_example_flatcg.bpf.c

03 Interesting Changes / Additions

scx_example_flatcg: rbtree + local kptr stashing
- Stash in map on cgroup_init, unstash and add to rbtree on enqueue

/* cgrp_enqueued */

cgv_node = bpf_kptr_xchg(&stash->node, NULL);

if (!cgv_node) { /* snip */ }

bpf_spin_lock(&cgv_tree_lock);

cgrp_cap_budget(cgv_node, cgc);

bpf_rbtree_add(&cgv_tree, &cgv_node->rb_node, cgv_node_less);

bpf_spin_unlock(&cgv_tree_lock);

From https://github.com/sched-ext/sched_ext/blob/sched_ext-v3/tools/sched_ext/scx_example_flatcg.bpf.c

https://github.com/sched-ext/sched_ext/blob/sched_ext-v3/tools/sched_ext/scx_example_flatcg.bpf.c

