
Local-storage user space 
mapping
Allowing user space to map entries in local storage (task, cgroup, etc) maps

David Vernet
Linux kernel engineer



Agenda

01 Local storage background

02 Discussing feature

03 How do we do it?



Disclaimer: This would be 
extremely complex, and needs a lot 
more thought and details



01 Local storage background



Some maps allow programs to allocate 
“local storage” entries for certain objects

- BPF_MAP_TYPE_TASK_STORAGE: Local storage entries for individual struct task_struct * objects
- BPF_MAP_TYPE_CGRP_STORAGE: Local storage entries for individual struct cgroup * objects

01 Local storage background



sched_ext example: task local storage

01 Local storage background



sched_ext example: Allocating task local 
storage

01 Local storage background



sched_ext example: Setting and querying 
task local storage

01 Local storage background



sched_ext example: Setting and querying 
task local storage

01 Local storage background



Local storage stored as struct 
bpf_local_storage __rcu object

- Fast path is O(1) lookup in a 16-element hashmap cache
- Depends on if other programs are also using local storage, but 

in practice this is almost always hit
- Slow path is O(n) iteration over all local storage entries in a list

- Added to cache after lookup, requires taking IRQ spinlock to 
avoid racing with deletion

- New local storage entries are allocated (when 
BPF_LOCAL_STORAGE_GET_F_CREATE is set). struct 
bpf_local_storage_elem (actual local storage) allocated with 
bpf_selem_alloc() → bpf_mem_cache_alloc_flags()

01 Local storage background



02 Discussing feature



User space sometimes needs a shared 
per-thread map

- sched_ext: Used when load balancing in Atropos: 
https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/atropos/src/main.rs#L193

- Can’t map local storage map, so instead they use a statically sized hashmap indexed by pid:
- https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/atropos/src/bpf/atropos.bpf.c#L121-L128
- https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/atropos/src/bpf/atropos.h#L34-L42

- Also uses another hashmap to indicate which pids should be assigned to new domains:
- https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/atropos/src/bpf/atropos.bpf.c#L130-L140

- ghOSt apparently uses something similar, but with a BPF_MAP_TYPE_ARRAY

02 Discussing feature

https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/atropos/src/main.rs#L193
https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/atropos/src/bpf/atropos.bpf.c#L121-L128
https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/atropos/src/bpf/atropos.h#L34-L42
https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/atropos/src/bpf/atropos.bpf.c#L130-L140


Statically sized maps work, but it’s wasteful 
and a poor UX

- Need to statically allocate all pages backing the map when prog is opened
- Either wasteful, or insufficient

- Poor UX – every caller has to do essentially the same thing
- Create map that’s indexed by pid (or cgroup id if doing this for cgroup local-storage map)
- Add lookup wrappers in both kernel and user space that either maps a task pid to an index in an array, or statically sizes the array 

map to contain all possible pids with the pid being a direct index

02 Discussing feature



03 How do we do it?



Create new local storage allocator?
- Local storage entries are put into pages that are allocated in a kfunc
- Pages are mapped contiguously in user space

- Full region must be mmap’ed when map is created
- Most pages will be unused – we could have unused pages in mapping not be present? Core BPF would be responsible for 

managing this mapping, preventing fragmentation in the allocator, publishing mapping changes to libbpf, etc.
- User space would have IDR layer, mapping some handle / fd to a local storage entry

- APIs provided by libbpf

- Is this realistic at all? Seems very complex, but could be a really nifty feature

03 How do we do it?




