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Disclaimer: This would be 
extremely complex, and needs a lot 
more thought and details



01 Local storage background



Some maps allow programs to allocate 
“local storage” entries for certain objects

- BPF_MAP_TYPE_TASK_STORAGE: Local storage entries for individual struct task_struct * objects
- BPF_MAP_TYPE_CGRP_STORAGE: Local storage entries for individual struct cgroup * objects
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sched_ext example: task local storage
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sched_ext example: Allocating task local 
storage
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sched_ext example: Setting and querying 
task local storage
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sched_ext example: Setting and querying 
task local storage
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Local storage stored as struct 
bpf_local_storage __rcu object

- Fast path is O(1) lookup in a 16-element hashmap cache
- Depends on if other programs are also using local storage, but 

in practice this is almost always hit
- Slow path is O(n) iteration over all local storage entries in a list

- Added to cache after lookup, requires taking IRQ spinlock to 
avoid racing with deletion

- New local storage entries are allocated (when 
BPF_LOCAL_STORAGE_GET_F_CREATE is set). struct 
bpf_local_storage_elem (actual local storage) allocated with 
bpf_selem_alloc() → bpf_mem_cache_alloc_flags()
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User space sometimes needs a shared 
per-thread map

- sched_ext: Used when load balancing in Atropos: 
https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/atropos/src/main.rs#L193

- Can’t map local storage map, so instead they use a statically sized hashmap indexed by pid:
- https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/atropos/src/bpf/atropos.bpf.c#L121-L128
- https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/atropos/src/bpf/atropos.h#L34-L42

- Also uses another hashmap to indicate which pids should be assigned to new domains:
- https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/atropos/src/bpf/atropos.bpf.c#L130-L140

- ghOSt apparently uses something similar, but with a BPF_MAP_TYPE_ARRAY
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Statically sized maps work, but it’s wasteful 
and a poor UX

- Need to statically allocate all pages backing the map when prog is opened
- Either wasteful, or insufficient

- Poor UX – every caller has to do essentially the same thing
- Create map that’s indexed by pid (or cgroup id if doing this for cgroup local-storage map)
- Add lookup wrappers in both kernel and user space that either maps a task pid to an index in an array, or statically sizes the array 

map to contain all possible pids with the pid being a direct index
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Create new local storage allocator?
- Local storage entries are put into pages that are allocated in a kfunc
- Pages are mapped contiguously in user space

- Full region must be mmap’ed when map is created
- Most pages will be unused – we could have unused pages in mapping not be present? Core BPF would be responsible for 

managing this mapping, preventing fragmentation in the allocator, publishing mapping changes to libbpf, etc.
- User space would have IDR layer, mapping some handle / fd to a local storage entry

- APIs provided by libbpf

- Is this realistic at all? Seems very complex, but could be a really nifty feature
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