
BPF “static keys”
Wildcard map
XXH3 hash

LSF/MM/BPF 2023
Anton Protopopov

https://www.linkedin.com/in/aspsk/
https://github.com/aspsk

Agenda

● BPF static key/branch

● Wildcard map: the current state

● XXH3 usage in BPF: stacktrace map and/or hashmap/bloom filter

Cilium: how to trace BPF tail calls?

Debugging with pwru

● pwru can be used to reply packet path inside the Linux kernel

● We want to also see what BPF datapath does in a similar manner

● Solution 0: don’t use tail calls, use BPF-to-BPF calls

● Solution 1: #ifdef, reload programs (works, but scary [not enough mem,

complexity, etc…])

● Solution 2: insert an empty noinline function @ tailcall entry (adds

~1.7ns/tailcall, so, say, ~10ns/packet)

● Solution 3: patch tail calls to run fentry (I have a hack to do this, but looks

like this is not visibly cheaper than just inserting a dummy noinline function)

● Solution 4: BPF “static keys” or alike: branch with zero overhead

https://github.com/cilium/pwru

BPF static keys

BPF static keys

BPF static keys

BPF static keys: what verifier thinks on load

static key1

__jump_table

key1 offset1_1
key2 …
key1 offset1_2
key3 …

Program

…

yes_1_1

yes_1_2
…

…

offset1_1:

offset1_2:

goto yes_1_1

goto yes_1_2

BPF static keys: after verified we patch goto->nop

static key1

__jump_table

key1 offset1_1
key2 …
key1 offset1_2
key3 …

Program

…

yes_1_1

yes_1_2
…

…

offset1_1:

offset1_2:

nop

nop

BPF static keys: if map value != 0, then we patch

static key1

__jump_table

key1 offset1_1
key2 …
key1 offset1_2
key3 …

Program

…

yes_1_1

yes_1_2
…

…

offset1_1:

offset1_2:

goto yes_1_1

goto yes_1_1

syscall(BPF_MAP_UPDATE, &{1})

BPF static keys: map value = 0, then back to nop

static key1

__jump_table

key1 offset1_1
key2 …
key1 offset1_2
key3 …

Program

…

yes_1_1

yes_1_2
…

…

offset1_1:

offset1_2:

nop

nop

syscall(BPF_MAP_UPDATE, &{0})

How to pass __jump_table to kernel?

static key1

__jump_table

key1 offset1_1
key2 …
key1 offset1_2
key3 …

Program

…

yes_1_1

yes_1_2
…

…

offset1_1:

offset1_2:

goto yes_1_1

goto yes_1_2

Wildcard map: use cases

● We want to classify input with bpf_map_lookup_elem() for such cases:

● 4/5-tuple, say [192.68.0.0/24, *, *, 22] (cilium packet recorder)

● Cilium firewall: [security_id, dport, protocol, direction]

● LPM: [192.68.0.0/24] (e.g., for geoip mapping)

● …
● (one map per use case)

Wildcard map: two types of keys

● For bpf_map_lookup_elem() we support two types of keys: rule and match

● (For other operations only rule is supported)

● Example: (ID, port range):

Key type rule:

Key type match:

type=rule
priority=X ID port_min port_max

type=match
priority=0 ID port 0

Wildcard map: types of rules
● Every type is of size N=1,2,...,16 bytes

BPF_WILDCARD_RULE_PREFIX: BPF_WILDCARD_RULE_RANGE:

BPF_WILDCARD_RULE_MATCH/BPF_WILDCARD_RULE_WILDCARD_MATCH:

prefix (N bytes) prefix_len (u32) min (N bytes) max (N bytes)

value (N bytes)

prefix (N bytes) value (N bytes)

value (N bytes)

Wildcard map: API

● To create map we need to specify a list of rule formats

Wildcard map: API

● The description is passed to the kernel as part of key BTF:

Map description

Rule exact format

Match exact format

Wildcard map: cilium firewall

● Motivation: k8s requires netpolicies with port ranges
● Current implementation:

○ Given a [security_identity, dport, protocol, direction] tuple do [up to] 6 lookups:
■ (security_identity, dport, protocol, direction)
■ (*, dport, protocol, direction)
■ (security_identity, *, protocol, direction)
■ (*, *, protocol, direction)
■ (security_identity, *, *, direction)
■ (*, *, *, direction)

● With wildcard map:
○ Just do one lookup (security_identity, dport, protocol, direction)
○ This actually is automatically translated to a similar algorithm to the above, but is configured

dynamically by installing different types of rules. Say, if we only have a wildcard entry, then this
is 6 times faster. Plus port ranges are supported.

https://github.com/cilium/cilium/blob/1.13.2/bpf/lib/policy.h#L183-L243
https://github.com/aspsk/cilium/blob/aspsk/draft/wildcard-map/bpf/lib/policy.h#L179-L207

Cilium firewall (random input, 1…1M rules)

Wildcard map: cilium packet recorder

● We want to be able to filter packets by ⅘-tuple:

● [167.138.128.0/17, 10.0.0.0/24, *, 22]

● [*, 10.0.0.0/24, *, 1-1024]

● The map usage is straightforward

Wildcard map: geoIP

● Wildcard map can mimic LPM trie:

○ LPM{ prefix, addr }

○ Wildcard{ .priority = 32- prefix, addr, prefix }

● Works faster than LPM (if rules are prepared properly):

○ IPv4: 3.7M entries, LPM: 1189ns/packet, wildcard: 709ns/packet

○ IPv6: 1.3M entries, LPM: 1090ns/packet, wildcard: 1550ns/packet

Wildcard map: random input, v4, “offline”

Wildcard map: random input, v6, “offline”

Wildcard map: random input

Wildcard map: WIP…
● So wildcard map still can degrade for different inputs

● There are ways to fix this, however, this is WIP

● Maybe will have to switch to another backend algorithm after all, as

TupleMerge turned out to be really hard to ride

A better hash function for maps

● I’ve run some benchmarks on using different hash function for BPF maps,

see a corresponding talk at fosdem 2023 with more details and for links

● The resume: for hashmap and bloom filter jhash2 is the best for small keys

● For keys >= 32 (or so, may differ for non-x86) xxh3 works way better

● Keys 16-32 are somewhere in between (may degrade for particular key sizes

on some architectures for big and/or full maps)

https://fosdem.org/2023/schedule/event/bpf_hashing/

A better hash function for maps

A better hash function for maps

* Spooky will actually outperform xxh64 at about 8K, too far to be interesting for BPF maps

Siphash is actually comparable to jhash

Hashmap (max_entries=100K, 100% full, Ryzen 9)

Hashmap: 100K, key_size=64

Better hash for hashmap/bloom

● What is left before posting a patch is to run benchmarks for different

architectures to find if 32 is actually ok [and how much it affects keys <32]

● The actual patch may differ due to the fact that xxh3 degrades at

key_len>240

xxh3 for stacktrace

● Stacktrace map doesn’t work [much] faster with a faster hash function (due

to get_perf_callchain()

● However, it also doesn’t run slower, as stacktrace keys are 8 x stack depth

long and this is typically > 32 where xxh3 is faster than jhash2

● What’s is better, we are interested in collisions even more than in speed

optimizations

Experiment

● Take stacktrace and replace hash by either jhash2, xxh3, siphash

● Create three maps at the same time:
sudo bpftrace -e 'profile:hz:257 { @[kstack] = count(); }' &
sudo bpftrace -e 'profile:hz:257 { @[kstack] = count(); }' &
sudo bpftrace -e 'profile:hz:257 { @[kstack] = count(); }' &

● Run some noise, like
while true; do
 stress-ng --all 16 --timeout 2s
 sleep 20
done

● Kill all: sudo pkill -9 bpftrace
● repeat

Results: jhash is ok (but slower)

● About 5 minutes results (bpftrace creates a map of 2^17 entries, so 5
minutes was time to populate about 50K buckets with my load (~2.5M
events = 32 CPU*257*300 sec))

● All hashes give about 1% of collisions for half-full map (22K / 2.7M events)

jhash2 siphash xxh3

% collisions 0.85 0.88 0.86

% collisions 0.84 0.84 0.85

% collisions 0.80 0.82 0.81

% collisions (mean) 0.83 0.84 0.84

Results: jhash is ok (but slower)

● About 25 minutes results (bpftrace creates a map of 2^17 entries, 25
minutes was time to populate about 95K buckets (80%) with my load (~12M
events = 32 CPU*257*1400 sec))

● All hashes give about 1.3% of collisions for 80%-full map (146K/11.5M
events)

jhash2 siphash xxh3

% collisions 1.263 1.281 1.281

% collisions 1.262 1.266 1.277

% collisions (mean) 1.26 1.27 1.28

Results: jhash is ok (but slower)

● About 24h results, 100% buckets full
● All hashes give about 1.7% of collisions (700M events/12M collisions)
● (I probably didn’t have enough random events to generate more collisions)

jhash2 siphash xxh3

% collisions 1.69 1.69 1.69

