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Background: Traffic control at cgroup (socket) layer in Cilium

● Socket-LB: Load balancing for service vip to backend

● Mount cgroup2 fs

● BPF_PROG_TYPE_CGROUP_SOCK_ADDR attached at the cgroup root

● Source IP and port in socket addr not available during program execution

● Common identification across control and data plane for fine-grained traffic control

● Selectively skip socket-LB

● Policy enforcement

● Tracing



Cgroup ID as shared context between control and data plane
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Cgroup ID: Unique value for cgroup v2 hierarchy

 Retrieves cgroup-id using BPF helpers:
u64 
bpf_get_current_cgroup_id(void): 
container cgroup ID
u64 
bpf_get_current_ancestor_cgroup_id(
int ancestor_level): pod cgroup ID
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Problems: Inconsistent cgroup hierarchies
- Pod/container cgroup paths are platform dependent

- /kubepods.slice/kubepods-besteffort.slice/kubepods-besteffort-pod9ac48755_3968_48e4_b9
dc_6d4b69f3bb42.slice/cri-containerd-3baf66ee56a52a8765c3deb2444315411a888fa3e2f
8f7ddd75e9ded3c34425e.scope

- /kubelet/kubepods/pod4841248b-fc2f-41f4-9981-a685bf840ab5/d8f227cc24940cfdce8d8e6
01f3b92242ac9661b0e83f0ea57fdea1cb6bc93ec

- Variable fields like pod QoS, ID, container runtime strings encoded in paths
- /kubepods.slice/kubepods-pod9aa48755_3968_48e4_b9dc_6d4b69f3bc23.slice/cri-contain

erd-3caf66ee56a52a8765c3deb2444315411a888fa3e2f8f7ddd75e9ded3c34425e.scope

- We discussed this issue with Kubernetes upstream
- Recommended container runtimes to pass pod cgroup paths to CNIs like Cilium

-         Cilium control plane has reliable access to pod cgroup paths

- Data plane unable to retrieve pod cgroup IDs deterministically  



Limitations and proposals to extend BPF cgroup infra

u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level): pod cgroup ID
Description: The helper is useful to implement policies based on
             cgroups that are upper in hierarchy than immediate
             cgroup associated with the current task.

Hindrance: Ancestor level is with respect to the root so it isn’t constant!

Alternative: Cgroup local storage associated with root hierarchy where BPF cgroup programs 
are attached X

Proposal: Allow ancestor levels with respect to current tasks => retrieve pod level cgroup ID 
(one level up ancestor) from container task

1. Pass negative ancestor levels to current helper?
2. Introduce new kfunc?
3. Get current hierarchy level?


