
BPF cgroup infra
enhancements for Kubernetes

like environments
Aditi Ghag, Isovalent

Background: Traffic control at cgroup (socket) layer in Cilium

● Socket-LB: Load balancing for service vip to backend

● Mount cgroup2 fs

● BPF_PROG_TYPE_CGROUP_SOCK_ADDR attached at the cgroup root

● Source IP and port in socket addr not available during program execution

● Common identification across control and data plane for fine-grained traffic control

● Selectively skip socket-LB

● Policy enforcement

● Tracing

Cgroup ID as shared context between control and data plane

Pod

Control plane

BPF
maps

Cilium
agent

BPF cgroup
program

Data plane

eth0

c1 c2 Maintains pod and container
cgroup paths and respective
cgroup ids

Cgroup ID: Unique value for cgroup v2 hierarchy

 Retrieves cgroup-id using BPF helpers:
u64
bpf_get_current_cgroup_id(void):
container cgroup ID
u64
bpf_get_current_ancestor_cgroup_id(
int ancestor_level): pod cgroup ID

Kubernetes
control plane

Host

Problems: Inconsistent cgroup hierarchies
- Pod/container cgroup paths are platform dependent

- /kubepods.slice/kubepods-besteffort.slice/kubepods-besteffort-pod9ac48755_3968_48e4_b9
dc_6d4b69f3bb42.slice/cri-containerd-3baf66ee56a52a8765c3deb2444315411a888fa3e2f
8f7ddd75e9ded3c34425e.scope

- /kubelet/kubepods/pod4841248b-fc2f-41f4-9981-a685bf840ab5/d8f227cc24940cfdce8d8e6
01f3b92242ac9661b0e83f0ea57fdea1cb6bc93ec

- Variable fields like pod QoS, ID, container runtime strings encoded in paths
- /kubepods.slice/kubepods-pod9aa48755_3968_48e4_b9dc_6d4b69f3bc23.slice/cri-contain

erd-3caf66ee56a52a8765c3deb2444315411a888fa3e2f8f7ddd75e9ded3c34425e.scope

- We discussed this issue with Kubernetes upstream
- Recommended container runtimes to pass pod cgroup paths to CNIs like Cilium

- Cilium control plane has reliable access to pod cgroup paths

- Data plane unable to retrieve pod cgroup IDs deterministically

Limitations and proposals to extend BPF cgroup infra

u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level): pod cgroup ID
Description: The helper is useful to implement policies based on
 cgroups that are upper in hierarchy than immediate
 cgroup associated with the current task.

Hindrance: Ancestor level is with respect to the root so it isn’t constant!

Alternative: Cgroup local storage associated with root hierarchy where BPF cgroup programs
are attached X

Proposal: Allow ancestor levels with respect to current tasks => retrieve pod level cgroup ID
(one level up ancestor) from container task

1. Pass negative ancestor levels to current helper?
2. Introduce new kfunc?
3. Get current hierarchy level?

