
A sketch data-structure for 
quantiles in BPF

Kornilios Kourtis
<kornilios@isovalent.com>

1



● Motivation
● Q-digest: a sketch data structure for quantiles
● Take a step back

Overall goal:

● Present a use-case, some first ideas, and solicit feedback

Outline

2



● Observe events happening with BPF
● Provide statistical summaries to users
● Act based on summary values (e.g., to detect anomalies)

Workflow

nginx postgresql

kernel

kprobe
kprobe

map

Maintaining summaries in kernel-side, allow 
us to:

● reduce copying overhead
● act inline 

3



● means, standard deviations, min/max values
○ easy to incrementally maintain

● quantiles (e.g., 50%, 99%)
○ more interesting
○ hard to incrementally maintain: sort all values and pick the one you want
○ Sketches -> approximate results at abounded size (tradeoff)

■ Other examples: bloom filters / count-min / etc.

Summaries

4



Q-digest

● “Medians and Beyond: New Aggregation Techniques for Sensor Networks”, 
Shrivastava et al, 2004

○ Describes the basic idea
○ Provides bounds on approximation error and size

Essentially:

● A binary trie
● Maintaining counts on [x*2d, (x+1)*2d) ranges, where d is the level

● Pick this one and see how far we can get

5



Q-digest: nodes

6

/* node represents range [a,b), where
 * a=(prefix+0)*(1<<suffix_len)
 * b=(prefix+1)*(1<<suffix_len) */
struct qdigest_node {
    struct rcu_head rcu;
    struct qdigest_node __rcu *child[2];
    __u64 count_acc;
    __u32 suffix_len;
    __u32 prefix;
};

struct qdigest_tree {
    struct bpf_map map;
    struct qdigest_node __rcu *root;
    spinlock_t lock;
};



Q-digest: compression

7

When max_entries nodes, 
iterate the tree and compress 
nodes



Q-digest: quantile lookup 

● percentile query → rank query
○ E.g., 50% in 13 elements →rank 7

● Traverse the tree until the proper node is found
○ return its range (known error)

8

n->l

n

n->r

rank < n->l->count_acc rank >= n->count_acc - n->r->count_acc



A new BPF map?

● Original idea behind this talk was to propose a new bpf map

But:

● Q-digest is not a fundamental map like arrays or hash-tables
● There are many different data-structures implementing sketches

(quantiles or other)
● Better to implement these data-structures in BPF

9



Q-digest using existing maps

● hash-table where key is <prefix>
● bpf_loop() for iteration
● bpf_spin_lock for while data structure

  

● Traversing the tree requires lookups instead of pointer dereferences

10



Can “modern” bpf implement Q-digest? 

Implement it directly using “modern bpf”

● Owning vs non-owning references for new-style “graph” data-structures 
(linked_list, rbtree)

● Open-coded iterator loops (bpf_iter_num)
○ allocate and deallocate nodes

11



A map implemented in eBPF

● Let’s assume that we have bpf program that can implement the operations of 
Q-digest

● We can use the bpf code to access it from BPF
● How do we access it from user-space?

○ BPF_PROG_RUN (?)

● A bpf map based on bpf programs that 

12



A map implemented in BPF

● We already pass fds on linking (attr.link_create.target_fd)
● bpf_struct_ops

13



Thanks!

14


