
Turing Complete EBPF
John Fastabend, Isovalent

Turing Machine: Cartoon

Turing Complete: Colloquial Test

● Loops: While(), goto, …

● Control flow (if, else)

● Unlimited Memory

Turing Complete: Colloquial Test

● Loops: While(), goto, …

● Control flow (if, else)

● Unlimited Arbitrary Large Memory

Turing Complete: What does it actually mean

● Cannot Solve:
○ halting problem
○ mortality problem
○ word problem for groups

● Can:
○ simulate Turing machines (emulation, simulation)
○ program: Game of Life Rule110
○ compute general-recursive functions

Turing Complete: What does it actually mean

● Cannot Solve:
○ halting problem
○ mortality problem
○ word problem for groups

● Can:
○ Parse L4/L7 protocols
○ DDOS Protections
○ Collect system metrics
○ File Integrity Monitoring

Do I need to solve any of these problems in BPF?

Who Cares? 3 characters

● Character 1: Learning BPF and/or trying to understand big picture
○ How do I map BPF onto languages/runtimes I know?
○ What are BPF common use cases?
○ Should I invest in BPF?

● Character 2:
○ BPF is not as powerful as X because of Turing completeness
○ BPF can not compute this Turing Complete things Foo
○ BPF can not solve my use case because of verification

● Character 3:
○ Fun and games

For many use cases
 bounded runtime is a good property

Upper bound running time is useful for many use case
● Networking
● Kernel security
● File Integrity Monitoring
● Scheduler?
● XDP
● ….

Challenge: Create an event based system where unbounded runtime is a useful property?
Did you want to run that use case in the Linux kernel?

But for fun lets
show how to make BPF Turing Complete

● Arbitrary large memory: maps
● Control Flow: normal C control flow
● Loops: ???

DoAgain

do_again(val, func) {
 bpf_timer_set_callback(&val→timer, func);
 bpf_timer_start(&val→timer, 0, 0);
}

static int func(void *map, int *key, struct v *val)

How to show BPF is Turing Complete

● To show turing complete implement Turing Machine
● Turing Machines are a bit of a pain to code
● It is good enough to implement something that is equivalent to ™
● 2-tag systems are TM

2-Tag System

Production Rules

A = ABAB
B = A
…

Input String

ABAABBBBB
 AABBBBBABAB
 BBBBBBABAB
 BBBBABABA
 BBABABAA
 ABABAAA
 ABAAAABAB
 ….

Cut Number

C = 2

DEMO

Production Rules

A = ABAB
B = A
…

Input String

ABAABBBBB
 AABBBBBABAB
 BBBBBBABAB
 BBBBABABA
 BBABABAA
 ABABAAA
 ABAAAABAB
 ….

Cut Number

C = 2

Questions/Comments

Should have a blog post soon.

