
Trusted unprivileged BPF

Andrii Nakryiko
Software Engineer

Current state
● Root or root-like capabilities are required:

○ CAP_BPF + {CAP_PERFMON, CAP_NET_ADMIN}

○ CAP_SYS_ADMIN

● Coarse-grained, broad, and permissive

○ You can do way more with those CAPs than just BPF

● Vanilla unprivileged BPF is dangerous and impractical

Problem: capable(CAP_BPF)
● bpf() expects CAP_{BPF, PERFMON, NET_ADMIN} in init namespace

● Incompatible with user namespaces

● FAQ: Can we just namespace CAP_BPF?

○ It’s just capable(...) -> ns_capable(...), right?

○ A: No.

■ BPF programs can’t be prevented from peeking at everything in the kernel

■ bpf_probe_read_kernel() + bpf_probe_read_user() = no sandboxing is possible

■ System-wide hooks and observability

Solution: 1st attempt
● /dev/bpf proposal by Song ([0])

○ Get fd by opening /dev/bpf

○ ioctl(fd, BPF_DEV_IOCTL_ENABLE_SYS_BPF)

○ Set persistent current->bpf_permitted bit

○ bpf() syscall takes current->bpf_permitted into account

● Rejected by upstream

● Eventually we ended up with current CAP_{BPF, PERFMON, NET_ADMIN}

 [0] https://lore.kernel.org/bpf/20190627201923.2589391-2-songliubraving@fb.com/

https://lore.kernel.org/bpf/20190627201923.2589391-2-songliubraving@fb.com/

Solution: 2nd attempt
● Authoritative LSM approach ([1])

○ New LSM hooks for map, prog, BTF creation

○ Reject, grant, pass through operations

○ Would pair nicely with BPF LSM:

■ BPF LSM policy determines application trustworthiness

■ BPF subsystem access is granted, rejected, or delegated to kernel

● Rejected by upstream

 [1] https://lore.kernel.org/bpf/20230412043300.360803-1-andrii@kernel.org/

https://lore.kernel.org/bpf/20230412043300.360803-1-andrii@kernel.org/

Solution: 3rd time’s a charm?
● Take good ideas from /dev/bpf and fix bad parts

○ FD as a proof of access grant is good

○ ioctl() and struct task_struct global bits are bad

○ device file is suboptimal and error-prone

● Augment with restrictive LSM for dynamic and fine-granular policy

BPF token
● New bpf() syscall command: BPF_TOKEN_CREATE

○ Returns FD representing access token

○ (?) Needs capable(CAP_SYS_ADMIN)

● BPF_PROG_LOAD accepts optional token_fd attribute

○ If valid, allows to proceed

○ If missing, usual capable(...) checks

○ Same for others: BPF_*_GET_FD_BY_ID, BPF_MAP_CREATE, etc

Solution: 3rd time’s a charm?

BPF token: transfer
● BPF token has to originate from privileged process

● … and then is transferred to trusted unprivileged one(s):

○ Unix domain sockets and SCM_RIGHTS

○ Or use BPF FS pinning, like any other BPF kernel object!

■ Privileged: BPF_OBJ_PIN -> /sys/fs/bpf/<token-path>

● chmod, chown, etc

■ Unprivileged: BPF_OBJ_GET /sys/fs/bpf/<token-path> → token_fd

● BPF LSM for dynamic and fine-grained control, if necessary

Solution: 3rd time’s a charm?

BPF token: practical aspects
● Extensible with union bpf_attr approach

○ Initially all-or-nothing (and thus CAP_SYS_ADMIN to create)

○ Adjust BPF verifier limits (e.g., max insns limit)

○ Limit types of progs, maps, helpers, etc?

● Custom user context to identify use cases

○ (?) Up to opaque 64KB per BPF token (BPF cookie on steroids)

○ To be accessed by BPF LSM hooks (per use-case policy config)

● Not a singleton: BPF token per use case

Solution: 3rd time’s a charm?

Ecosystem support for BPF token
● Standard location of BPF token within container

○ (?) /sys/fs/bpf/.token

○ libbpf/BPF loaders, bpftrace, bpftool, etc. to do BPF_OBJ_GET(/sys/fs/bpf/.token)

○ BPF apps automatically will work with BPF as unprivileged

● Systemd (and container managers) support

○ Create BPF token from init namespace

○ Mount BPF FS inside container

○ Pin /sys/fs/bpf/.token

Thank you!

