
Tetragon:
Runtime Observability and
Security

Security Observability &
Runtime Enforcement

Agenda

● eBPF-based Runtime Security - Tetragon

● Demo and Dashboard share

● Next Steps

BPF
The Cloud Native Observability Platform

With an observability platform we can answer…

● What binaries have run in the past and are running now?
● Are we running latest version of libraries?
● What network connections are open: both listening, connecting for UDP/TCP/RawSockets/…
● Is my network healthy: are there drops, is the latency within SLAs, detecting bursts and dips, …
● What files are being accessed, written, executed, mmapped, …
● Are my connections encrypted? And with what TLS, IPSec, Wireguard.
● Are my TLS connections meeting compliance requirements.
● What syscalls are my applications using today, do they suddenly use new syscalls, args, binaries?

Competing Ideas

● Real time (time scales of us, ms, …)
● Minimal CPU and memory constraints (<1vcpu, <500MB)
● Minimal Application impacts (<10%)
● Offline and Online modeles, respect the pipeline limitations

BPF The Cloud Native Observability Platform:
Why is this Interesting

BPF The Cloud Native Observability Platform:
Tetragon:

● Platform to deploy BPF hooks in clusters, aggregate
data, alert on events and push data into SIEM,
Security Pipeline, Grafana.

● Extend Linux observability and security model to be
Kubernetes aware
○ Pods, Labels, Containers, etc

● Can be dynamically done at scale (10k,20k,...+
nodes)

● Minimally invasive when done with care

BPF The Cloud Native Observability Platform:
Tetragon Philosophy:

● Most common Threat Model: Users can not be trusted
○ User memory is untrusted (TOCTOU)
○ Uprobes are untrusted
○ Missing data is a serious bug (SEV-*)

● Designed to scale (10, 50, 100, 1k, 10k,20k,...+ nodes)
○ Will not add features that don’t scale
○ Filters and aggregation in BPF 1st
○ Stop gap Filter and aggregate in user space

● Fail closed

● Be kind to the security/audit stack
○ Events cost money $$$
○ Rate limits
○ Filter and aggregate in BPF and user space

BPF The Cloud Native Observability Platform
Tetragon: Core Feature: Execution Traces

Every Executed Binary In the System Is Recorded

● System is K8s Cluster, Servers, and VMs
● For historical DB time series database

Clone + ExecExec

Java
C

Java
B

Java
D

Java
A

Exec

Clone + Exec

Exit

BPF The Cloud Native Observability Platform
Tetragon: Core Feature: Identity and Location

Identity = { binary, pid, libs, args, buildID, digest }
Location = { cluster, node, namespace, pod, container, time }

F(Identity, Location) -> Unique ID

BPF The Cloud Native Observability Platform
Tetragon: Core Feature: Execution Traces

Customer Dashboard Grafana

Clone + ExecExec

Java
C

Java
B

Java
D

Java
A

Exec

Clone + Exec

Exit

BPF The Cloud Native Observability Platform
Tetragon: Kprobe, anything

kind: TracingPolicy
Metadata:
 name: "sys-write-follow-fd-etc-pwd"
Spec:
 Kprobes:
 - call: "fd_install"
 syscall: false
 Args:
 - index: 0
 type: int
 - index: 1
 type: "file"

selectors:
 - matchPIDs:
 - operator: NotIn
 followForks: true
 isNamespacePID: true
 Values:
 - 0
 - 1
 matchArgs:
 - index: 1
 operator: "Equal"
 Values:
 - "etc/passwd"
 matchActions:
 - action: FollowFD

BPF The Cloud Native Observability Platform
Tetragon: TCP/UDP Network Connectivity

Every connect/listen/accept in the system is known.
System: K8s nodes, VMs, Servers

BPF The Cloud Native Observability Platform
Tetragon: File Integrity Monitoring

BPF The Cloud Native Observability Platform
Tetragon: File Integrity Monitoring

Customer Grafana Dashboard

BPF The Cloud Native Observability Platform
Tetragon: Enforcement

BPF The Cloud Native Observability Platform
Tetragon: Enforcement

BPF The Cloud Native Observability Platform
Tetragon: Performance Benchmarks

BPF The Cloud Native Observability Platform
Tetragon: Demo

BPF The Cloud Native Observability Platform
Tetragon: Future Work

● T-digest and Q-digest overall theme in kernel aggregation and summary
● Multi-attach kprobe, uprobe
● SR-IOV metrics (customers using SR-IOV for latency)
● Application signatures
● BPF signatures
● Kernel/User stack traces
● Iterate net_device list, net_ns list, sockets, inodes
● TX/RX NIC descriptors for low-level NIC health metrics
● Sockmap/Sockhash fixes and improvements
● KTLS coming soon time to get it working golang, java, openssl, …

How to contribute?

● github.com/cilium/tetragon
○ Use the tool: report bugs, create feature request, tell your user experience
○ Improve the documentation (open issues)
○ Add your use cases “./crds/examples”, “./contrib”
○ Tell us about how it doesn’t work for some use cases
○ Feedback on UI, CRDs, etc
○ Fix a bug, Implement a feature

● Lots of work across all layers of the stack
○ Documentation, K8s, Golang, Systems Programming, BPF, Linux Kernel, Packaging

Thank you! Q&A

cilium/tetragon
@ciliumproject
cilium.io

@jrfastab
@sharlns

https://twitter.com/isovalent
https://github.com/isovalent
https://isovalent.com/

