
Fuse-BPF
Stacked Filesystem Support for FUSE



Design Goals

● Optimize FUSE when used as a Stacked Filesystem
○ Perform as close to native filesystem as possible

● Keep ease of use of FUSE
○ Should maintain compatibility across kernel versions



Classic Fuse

Lower FSFUSE driver

FUSE daemonApp

Kernel Space

VFS

User Space

syscall

FUSE mount /dev/fuse mount

syscall/dev/fuse 
read/write



FUSE driver

Fuse BPF

VFS

Optional 
postfilter

Optional prefilter

Lower FS

FUSE 
daemonApp

Kernel Space

User Space

syscall

FUSE mount /dev/fuse

Fuse 
read/write

Optional BPF 
prefilter

Optional BPF 
postfilter

FUSE 
daemon

/dev/fuse

Fuse 
read/write

Backing call 
VFS



Current Design

● BPF struct op program set at lookup time
○ Two callbacks per opcode: prefilter and postfilter

● Prefilter
○ Adjust input arguments (structs when possible, fuse_buffer when variable sized)
○ Can call userspace prefilter, or abort and take normal fuse path

● Postfilter
○ Adjust output arguments
○ Can call userspace postfilter and adjust error code

● Can implement bpf callbacks as needed
○ If no bpf is present, will default to unaltered backing call (In future this may be configured in fuse_init for 

forwards compatibility)



Fuse buffers

● Opaque structure
○ Can only be altered by kfunc

○ Must convert to dynptr using kfuncs before use
(bpf_fuse_get_rw_dynptr/bpf_fuse_get_ro_dynptr) name will likely change

○ Contain metadata describing argument’s possible size and allocation status. Fuse cleans up extra 
allocations after calls.



Using Fuse BPF

● Register bpf program
○ bpftool struct_op register [compiled bpf]

● Set BPF at mount time
○ root_bpf=[name of fuse_ops]
○ root_dir=[fd for backing directory]

● Set at lookup time
○ Append block to lookup response

uint32_t entry_type FUSE_ENTRY_BPF

uint32_t reserved 0

char name[16] “struct_opname”

uint32_t entry_type FUSE_ENTRY_BACKING

uint32_t reserved 0

uint64_t unused 0

Uint64_t fd [fd of backing file]



Fuse_ops structure

struct fuse_ops {

uint32_t (*default_filter)(const struct bpf_fuse_meta_info *meta);

uint32_t (*open_prefilter)(const struct bpf_fuse_meta_info *meta, struct fuse_open_in *in);
uint32_t (*open_postfilter)(const struct bpf_fuse_meta_info *meta, const struct fuse_open_in *in,

struct fuse_open_out *out);

uint32_t (*opendir_prefilter)(const struct bpf_fuse_meta_info *meta, struct fuse_open_in *in);
uint32_t (*opendir_postfilter)(const struct bpf_fuse_meta_info *meta, const struct fuse_open_in *in,

struct fuse_open_out *out);

…

char name[BPF_FUSE_NAME_MAX];

};



Performance

Bpf prog (v1)
Simple BPF

Fuse lower LibFuse
passthrough_hp

Fuse BPF 
lower

Fuse BPF

fio-seq-read 3,514.33 1,571.00 -55.30% 3,409.00 3,433.67 0.72%

fio-rand-RW: 
READ

3,116.67 246.33 -92.10% 3,102.00 2,888.33 -6.89%

fio-rand-RW: 
WRITE

2,078.33 164.33 -92.09% 2,068.67 1,926.33 -6.88%

filecreate-ioengine 16.37 13.53 -17.31% 16.33 15.93 -2.45%

Bpf prog (v1)
Tracing BPF

Fuse lower LibFuse
passthrough_hp

Fuse BPF 
lower

Fuse BPF

fio-seq-read 3,410.00 1,584.33 -53.54% 3,430.67 3,413.00 -0.51%

fio-rand-RW: 
READ

3,094.00 214.00 -93.08% 3,078.00 2,412.33 -21.63%

fio-rand-RW: 
WRITE

2,063.33 142.67 -93.09% 2,052.67 1,608.33 -21.65%

filecreate-ioengine 16.17 14.07 -12.99% 17.20 15.97 -7.17%

Struct_op
version

Fuse lower LibFuse
passthrough_hp

Fuse BPF 
lower

Fuse BPF

fio-seq-read 3,468.00 1,589.00 -54.18% 3,503.00 3,454.00 -1.40%

fio-rand-RW: 
READ

3,132.67 246.33 -92.14% 3,129.33 2,582.67 -17.47%

fio-rand-RW: 
WRITE

2,089.00 164.00 -92.15% 2,086.67 1,722.00 -17.48%

filecreate-ioengine 16.27 13.73 -15.57% 16.10 15.70 -2.48%

Hardware

● ASRock Industrial AMD Barebone 4X4 
BOX-4300U

● Kingston FURY Impact 16GB (1 x 16GB) 260-Pin 
DDR4 SO-DIMM DDR4 3200 (PC4 25600)

● Western Digital WD_BLACK SN770 M.2 2280 
250GB PCIe Gen4 16GT/s

Software

● Ubuntu 22.10

Lower filesystem is a tmpfs ramdisk

All reported values in MiB/s



ToDo

● Perform operations using fuse daemon credentials
● Support for additional opcodes (FUSE_IOCTL, mapping, etc)
● Verify and use altered arguments from all pre/postfilters
● Support multiple backing files, and maybe multiple bpf programs
● Invalidate dynptrs when fuse_buffer reallocats memory (New dynptr type?)
● FUSE_INIT information for supported backing ops/default actions
● Libfuse integration



Issues

● Does not gracefully fall back to normal fuse
○ Currently bpf created nodes have node id of 0, unless assigned in bpf.
○ Add ability to reserve id block? Provide means to identify node/set node id later?

● Struct ops has no module support
○ Current patch set exports registration call
○ Probably will add module support to struct_ops in the future

● Many struct op callbacks
○ Consolidate some opcodes?
○ Merge pre/post filter and add backing calls as kfuncs?

● Limited dynptr API
○ Many recent updates, patches posted



Upstreaming plans

● Support subset of ops independently
○ Must inform userspace of what ops are supported (FUSE_INIT extension?)

● Bpf changes submitted separately
○ Dynpointer adjustments
○ Struct op module support

■ Fuse struct_op definition will then move to fs/fuse


