
BPF Graph Collections +
Verifier Changes
LSFMMBPF 2023

David Marchevsky
Software Engineer

TL;DR
What’s so bad about BPF maps?

How do new-style data structures look?

What interesting verifier changes were necessary
to implement these data structures?

Motivation: sched_ext
LWN’s “The extensible scheduler class” is great summary

Tejun: “Why can’t this look like normal kernel code?”

https://lwn.net/Articles/922405/

Problem with maps: unfamiliarity
Some data structures fit naturally into the map API (e.g. HASH, ARRAY), others less so

Programs interacting with the latter group of data structures can be hard to parse for
kernel programmers without previous BPF experience, and unwieldy to use otherwise

Interaction with data structures is a big part of familiarity / understandability

Problem with maps: inflexibility
When the map API was developed BPF programs were less complex than they are now,
and there were constraints on BPF programs that are no longer relevant

• e.g. max_elems to declare size ahead of time

When new data structures are added to the BPF environment, this tends to lead to a
“square peg / round hole” problem, as not all generic map helpers are relevant or
convenient for many kinds of data structures

• e.g. what should bpf_map_delete_elem do for a bloom filter map?
• How can a rbtree map support custom comparators for adding a node to a tree when
bpf_map_update_elem provides no such facility?

Problem with maps: inflexibility
Maps and the (generic or custom) helper functions which manipulate them are UAPI

● As a result our ability to back out of suboptimal architecture or implementation
decisions is limited. This raises the cost of adding a new helper or map.

We now have kfuncs (“unstable helpers”), BTF, and kptrs, so the above limitation is
self-imposed

• See Alexei’s LPC 2022 presentation for more on this

Object lifetime tied to map lifetime

https://www.youtube.com/watch?v=K08YCgALHDo

BPF linked list and rbtree
● kfuncs for interaction
● use BPF any-context allocator

○ No more max_elems,allocate nodes yourself and put them in the collection
● “Intrusive” nodes - define your own struct w/ bpf_{list,rb}_node field
● Locking exposed to BPF program writer - grab spinlock yourself

https://lwn.net/Articles/899274/

Show me the code: Definition

spin_lock can’t be mmap’d to userspace,
hence private section

rb_root in same section (map_value, really)
as spin_lock -> lock protects the tree

__contains -> BTF tag that ties tree to node
type

struct node_data {
long key;
long data;
struct bpf_rb_node node;

};

#define private(name) SEC(".data." #name) __hidden
__attribute__((aligned(8)))
private(A) struct bpf_spin_lock glock;
private(A) struct bpf_rb_root groot __contains(node_data, node);

selftests/bpf/progs/rbtree.c

User-defined type w/ bpf_rb_node

Show me the code: Allocate
some nodes

long rbtree_first_and_remove(void *ctx)
{

struct bpf_rb_node *res = NULL;
struct node_data *n, *m, *o;

n = bpf_obj_new(typeof(*n));
if (!n)

return 1;
n->key = 3;

m = bpf_obj_new(typeof(*m));
if (!m)

goto err_out;
m->key = 5;

o = bpf_obj_new(typeof(*o));
if (!o)

goto err_out;
o->key = 1;

selftests/bpf/progs/rbtree.c

bpf_obj_new is a wrapper around BPF
allocator

Show me the code: Add
nodes to tree

bpf_spin_lock(&glock);
bpf_rbtree_add(&groot, &n->node, less);
bpf_rbtree_add(&groot, &m->node, less);
bpf_rbtree_add(&groot, &o->node, less);

res = bpf_rbtree_first(&groot);
if (!res) {

bpf_spin_unlock(&glock);
return 2;

}

o = container_of(res, struct node_data, node);

res = bpf_rbtree_remove(&groot, &o->node);
bpf_spin_unlock(&glock);

selftests/bpf/progs/rbtree.c

Verifier will reject programs which don’t hold
lock assoc’d w/ tree

rbtree_add passes ownership of node’s
lifetime to the tree

Looks more/less like normal kernel code

Show me the code: Shared
ownership for nodes*

struct node_data {
long key;
long list_data;
struct bpf_rb_node r;
struct bpf_list_node l;
struct bpf_refcount ref;

};

selftests/bpf/progs/rbtree.c

bpf_refcount implements shared ownership

Show me the code: Shared
ownership for nodes*

struct node_data *n, *m;

n = bpf_obj_new(typeof(*n));
if (!n)
 return -1;

m = bpf_refcount_acquire(n);
m->key = 123;
m->list_data = 456;

bpf_spin_lock(lock);
if (bpf_rbtree_add(root, &n->r, less)) { /* snip */ }
bpf_spin_unlock(lock);

bpf_spin_lock(lock);
if (bpf_list_push_front(head, &m->l)) { /* snip */ }
bpf_spin_unlock(lock);

selftests/bpf/progs/refcounted_kptr.c

bpf_refcount_acquire -> bump refcount

Interesting Verifier Changes

bpf_obj_new, bpf_obj_drop

● Give me a typed object (type can be user-defined)

btf_field and btf_record

● Does this user-defined type contain any special fields? (spin_lock, rb node)
● If so, where?

Strong and weak references for local kptrs

● n.b.: called “owning” “non-owning” in code currently
● Express ownership / lack of ownership over kptr’s lifetime

Shared ownership w/ bpf_refcount*

● Integration w/ bpf_obj_new, bpf_obj_drop

Can you use any of these to ease implementation of your idea?

