
Various BPF core topics.

Daniel Borkmann
<daniel@iogearbox.net>

Isovalent

lsfmm, bpf track, April, 2019

Daniel Borkmann, Isovalent BPF core topics April, 2019 1 / 15

libbpf items

Daniel Borkmann, Isovalent BPF core topics April, 2019 2 / 15

libbpf items

libbpf everywhere, part 1: conversion of iproute2
struct bpf elf map’s one-way compatibility
Fields: id, pinning, inner id, inner idx
Generalization of such extensions via BTF

Might need to go in line with making BTF mandatory
Could work given iproute2 is aligned with kernel releases

Getting rid of BPF ANNOTATE KV PAIR()
Integration into struct bpf elf map?

Rest of iproute2 specifics e.g. auto-attaching tail calls less relevant for
libbpf

Daniel Borkmann, Isovalent BPF core topics April, 2019 3 / 15

libbpf items

libbpf everywhere, part 2: golang bindings
Cilium uses iproute2 loader, also has ELF parsing in golang
Goal: everything out of native golang, only debugging generated object
files via iproute2/bpftool
Both would have same behavior
Bindings would be under upstream under tools/lib/bpf/
Challenge: keeping up with libbpf pace, binding test coverage

Development and maintenance (us + Cloudflare + others)?
Proper libbpf test suite (incl. bindings) in kselftests?
Ideal: new features submitted along with bindings

Daniel Borkmann, Isovalent BPF core topics April, 2019 4 / 15

libbpf items

libbpf multi-object support
Goal: BPF-to-BPF calls and non-static global data across objects
BPF-to-BPF calls, what is needed?

Program retrieval via BTF based on function signature?
What about collisions, should they be rejected?
Would libbpf query kernel or only object based?
Call extension with prog fd similarly how we reference maps
Verifier context (input, output types) stored in prog
Target address for JITs via bpf jit get func addr()

Non-static global data, what is needed?
Other object’s .data/.bss/.rodata map retrieval via BTF
Similar question as with calls: search scope and collisions?
Rest of workflow for kernel insertion same

Daniel Borkmann, Isovalent BPF core topics April, 2019 5 / 15

BPF tail calls. Part 1: Combine with BPF-to-BPF calls

Daniel Borkmann, Isovalent BPF core topics April, 2019 6 / 15

BPF tail calls. Part 1: Combine with BPF-to-BPF calls

Heavily used inside Cilium’s datapath for various reasons
Keeping complexity/insns down for older kernels (4.9+)

Some of v4, v6 handling ’outsourced’ to tail calls
NAT46, ARP proxy, ICMP/ICMPv6 moved out of ciritical path

Enabling debugging on the fly (e.g. drop notifications)
Flexible per endpoint policy handling

Daniel Borkmann, Isovalent BPF core topics April, 2019 7 / 15

BPF tail calls. Part 1: Combine with BPF-to-BPF calls

Problem: does not work with BPF-to-BPF calls
Today: everything needs always inline hack
Not very icache friendly, bloats up insn image (in some configs close to
4k already)

Cilium programs with always inline removed1:
Plain replace → backend error: defined with too many args

BPF conntrack lookup, lb reverse NAT need rework (left inlined)
Solving generically: push/pop BPF insns?

bpf lxc.o: shrinks prog sections up to 15%, moves 1.2k insns into .text
With BPF conntrack lookup expected to be ↑ %

1DENABLE {IPV4,IPV6,LB L3,LB L4,NAT46,IPSEC,ARP RESPONDER,LEGACY SERVICES,MASQUERADE}
Daniel Borkmann, Isovalent BPF core topics April, 2019 8 / 15

BPF tail calls. Part 1: Combine with BPF-to-BPF calls

Possible semantics when in subprogs:
Tail called program replaces current program entirely
Tail called program replaces current sub-program only

Both could be possible path forward (though expected might be
option 1)

BPF prog 1 (entry)

BPF subprog 1

BPF subprog 2

foobar()

BPF_PROG_RUN()

BPF prog 2
BPF prog 1 (entry)

BPF subprog 1

BPF subprog 2

foobar()

BPF_PROG_RUN()

BPF prog 2

Daniel Borkmann, Isovalent BPF core topics April, 2019 9 / 15

BPF tail calls. Part 1: Combine with BPF-to-BPF calls

Here: tail called program replaces current program entirely
Borrowing implicit setjmp/longjmp idea for subprogs

After epilogue in main program we have emitted code section for tail
calls. A-priori known location for subprogs.
On entry we save SP at location also known to subprogs
From subprog where we do tail call, we save current SP, replace with
main prog’s one
Then jump to tail call section, reg1-3 content still intact
If tail call fails, we restore old SP and continue at next insn in subprog
Due to SP switch, tail call counter from main prog being used
Tail called prog will restore regs based on SP

Stack: main prog (512 fixed) + subprogs (≤ 512)

Daniel Borkmann, Isovalent BPF core topics April, 2019 10 / 15

BPF tail calls. Part 1: Combine with BPF-to-BPF calls

Here: tail called program replaces current sub-program only
Advantage: nothing needs to be changed for JITs
Verifier needs to match on expected return types
Types need to be enforced upon prog attach time

Stack: main prog (512 fixed) + subprogs (≤ 8 * 512)
How can we overcome excessive stack usage?

Daniel Borkmann, Isovalent BPF core topics April, 2019 11 / 15

BPF tail calls. Part 2: Switch to direct calls

Daniel Borkmann, Isovalent BPF core topics April, 2019 12 / 15

BPF tail calls. Part 2: Switch to direct calls

Motivation: avoiding expensive retpolines
2 locations: BPF prog entry (e.g. XDP), tail call maps
Tricky part: addresses can change at runtime

BPF tail call

BPF insns...

BPF insns...

BPF prog 1
jmp to fixed
location

per tail call map exec buffer

jmp +x or nop

Binary search tree:
if key <= y
 if key == y jmp addr
 if key <= z
 ...
 else
 ...
else
 ...

BPF prog 2

BPF prog 3

(update buffer)

Daniel Borkmann, Isovalent BPF core topics April, 2019 13 / 15

Misc items

Daniel Borkmann, Isovalent BPF core topics April, 2019 14 / 15

Misc items

LRU map entry eviction: flag for not marking on user space lookup

Global data: read-mostly support → could be done as separate map

Tooling infrastructure: barriers in installed headers

Daniel Borkmann, Isovalent BPF core topics April, 2019 15 / 15

